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A B S T R A C T

Re-chargeable batteries are an important element in the solution to the future of portable
energy storage. In that context, electrolytes play a critical role in the adjudication of a battery’s
capacity, efficiency and operation. In most current embodiments of rechargeable batteries,
including the widely researched lithium-ion system, electrolytes are liquid. That said, the use
of solid electrolytes in lieu of their liquid counterparts is being increasingly explored. Solid
electrolytes offer increased stability and improved safety and (specifically polymers) are also
ideal candidates in the context of stretchable and flexible electronics. Unfortunately, most
solid polymer electrolytes possess ionic conductivity that is orders of magnitude lower than
typical liquid electrolytes. In this work, we explore the possibility of microstructure design
to enhance the effective ionic conductivity of composite polymer electrolytes. We develop a
theoretical framework, grounded in thermodynamics and principles of continuum mechanics,
to model the coupled deformation, electrostatics and diffusion in heterogeneous electrolytes.
Guided by numerical thought experiments, we establish a homogenization procedure that
significantly reduces the complexity of the original non-linear problem and derive general
analytical expressions for the effective behavior of electrolytes and closed-form solutions for
specific microstructures. Using insights from our model, in addition to proposing suggestions
for improving the ionic conductivity of solid electrolytes, we are also able to explain several per-
plexing experimental observations and address questions such as: (i) Why do some experiments
show a dramatic improvement in the ionic conductivity of nanoparticle-impregnated polymers
while others yield a decrease? (ii) What is the effect of deformation on ionic conductivity?

. Introduction

Rechargeable batteries, whether for consumer and portable electronics, green vehicles or simply for our electrical grid, are
xpected to be an integral part of the future of sustainable clean energy (Chu and Majumdar, 2012; Zito and Ardebili, 2019). The
urrent generation of available battery systems, at least those that are commercially viable or in advanced stages of laboratory
evelopment, still fall woefully short of the future demands in terms of the trade-offs between energy density capacity, reliability,
fficiency and cost (Tarascon and Armand, 2001; Kasavajjula et al., 2007). Accordingly, intense research in the broadly defined field
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Fig. 1. Schematic of essential characteristics of a typical electrolyte including: electrochemical stability (top left), ionic conductivity (top right), thermal stability
(bottom left), suppression of dendrite growth (bottom right).

of materials science is ongoing to develop next-generation batteries. We refer the reader to several expert reviews on this subject
that have appeared recently (Goodenough and Park, 2013; Winter and Besenhard, 1999; Lukatskaya et al., 2016).

The energy capacity of a battery, which is amalgamation of its energy density and cyclability,1 depends primarily on the design
and chemistry of the electrodes (Li et al., 2016). It is therefore hardly surprising that a significant effort has been expended on the
development of electrode materials (Li et al., 2019; Roy and Srivastava, 2015; Chan et al., 2008; Bower et al., 2011) like Silicon
for the Li-ion system (due to its high specific charge density), alternatives to Li-based systems like Sodium (Manthiram and Yu,
2015; Vaalma et al., 2018) and Magnesium (Aurbach et al., 2000), and alternative chemistries (e.g. metal–air battery systems (Jung
et al., 2012; Bruce et al., 2012) and Lithium-Sulfur batteries (Manthiram et al., 2014)). In particular, theoretical and computational
materials and mechanics community have largely, with some notable exceptions which we will highlight in due course, focused
on the understanding and development of electrode materials2 (Winter and Besenhard, 1999; Kasavajjula et al., 2007; Lukatskaya
et al., 2016; Bower et al., 2011; Di Leo et al., 2014; Zhao et al., 2010, 2011; Sethuraman et al., 2010; Chon et al., 2011; Gao and
Hong, 2016; Zhang et al., 2015; Lang et al., 2016; Song et al., 2010; Lang et al., 2016; Shen et al., 2020; Chang et al., 2018; Guo
et al., 2020; Yan et al., 2017; Cho et al., 2020; Guo et al., 2018; Darbaniyan et al., 2020; Lee et al., 2015; Yan et al., 2015; Xiao
et al., 2015).

Electrolytes, as the primary mediator of ion transport between the electrodes, dictate the current density of the battery, temporal
stability and safety (Li et al., 2016; Quartarone and Mustarelli, 2011). Notably, the study into both the basic science as well as design
of next-generation electrolytes has acquired significant prominence during the past several years (c.f. Zhang et al. (2020c), Fan et al.

1 A measure of repeated charge–discharge cycles before the battery’s capacity declines appreciably.
2 As an example of a well-studied mechanics issue, Silicon anode in a Li-ion battery system can sustain volumetric expansion of close to 300% during a

charge–discharge cycle, leading to a heterogeneous stress state, nucleation of defects and micro-cracks and eventual loss of capacity over a short number of
cycles.
2
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(2018), Stephan (2006), Balaish et al. (2014), Zhao et al. (2020), Ito and Nohira (2000), Quartarone and Mustarelli (2020)). On that
note, as shown schematically in Fig. 1, there are several attributes of an electrolyte that collectively characterize its effectiveness in
a battery system e.g. ionic conductivity, electrochemical stability in the voltage range of operation, thermal stability among others.3

Research into electrolytes in batteries4 has, until recently, predominantly focused on liquid electrolytes—the most commonly
used in current systems. There are however compelling reasons to understand and develop solid electrolytes. Liquid electrolytes
have well-noted safety concerns,5 and can suffer from poor thermal and electrochemical instability (Quartarone and Mustarelli,
2011). Notably, solid electrolytes are also envisaged to pave the way for the development of novel battery chemistries and offer
advantages in terms of safety and inhibiting dendritic growth at metal electrodes (Li et al., 2016; Yang et al., 2017). Finally, we
remark that the growing interest in stretchable and flexible electronics requires the concomitant development of stretchable and
flexible batteries6 with solid-state electrolytes . Specifically, from a mechanical viewpoint, in the context of stretchable and flexible
electronics and batteries, the electrolyte must be both solid-state as well as soft7(Tan et al., 2018; Zhang et al., 2015; Xu et al., 2013;
Ardebili, 2020; Tang et al., 2012; Li et al., 2013). The larger deformability of soft solid electrolytes can also help with accommodation
of the swelling induced strain (and consequent stresses) in electrodes—which is a major issue in the context of Silicon electrode in
a Lithium-ion battery system (Manthiram et al., 2017).

Ionic conductivity is arguably the most important, and perhaps the defining, characteristic of an electrolyte. A quick circuit
analysis (c.f. Section 3.2) shows that the conversion efficiency from chemical energy of active electrode materials to useful work of
the external circuit is given by 𝑅∕(𝑅+𝑅𝑏), where 𝑅 and 𝑅𝑏 stand for the resistance of the external circuit and electrolyte respectively.

oting that 𝑅𝑏 is inversely proportional to the ionic conductivity of the electrolyte, enhanced ionic conductivity acts to reduce waste
eat and temperature and improves the conversion efficiency and overall safety and reliability of the battery. In this sense, liquid
lectrolytes8 offer significant advantage over their solid counterparts. Their ionic conductivity is several orders of magnitude larger
han those of solid electrolytes.9 A key challenge in the development of solid electrolytes therefore involves increasing of ionic
onductivity.10 This is particularly exacerbated in applications that require organic solid electrolytes (polymer-based) and have a
equirement for large deformation (e.g. stretchable electronics).

Several attempts have been made to increase ionic conductivity of solid polymer-based electrolytes. A partial list of such efforts
or the prevention of crystallization includes11: (1) addition of plasticizers (Watanabe et al., 1981),12 (2) making composites in the
ense of embedding conductive and non-conductive ceramic particles (Zhang et al., 2020b; Johan et al., 2011; Liu et al., 2015; Wang
t al., 2006; Li et al., 2013; Li and Ardebili, 2014), and (3) application of mechanical deformation (Golodnitsky and Peled, 2000;
olodnitsky et al., 2003; Kelly et al., 2016; Minami, 2006). In relation to these attempts, the experimental literature appears to
xhibit perplexing trends. While some papers have shown a dramatic improvement – several orders of magnitude increase – in the
onic conductivity by incorporating ceramic inclusions, others have obtained a decrease. For instance, Weston and Steele (Weston
nd Steele, 1982) observed no effect on the effective ionic conductivity by addition of Al2O3 particles and even an adverse effect
t high volume fraction. Furthermore, there appears to be no clear consensus regarding the effect of particle size and shape and
he emergent macroscopic ionic conductivity of the composite polymer electrolyte. In regard to shape, recently studies by Liu et al.
2015, 2017) appeared to indicate that nanowire ceramic inclusion have the best effect in enhancement of the ionic conductivity
n comparison to spherical particles. Finally, the coupling of mechanical deformation and ionic conductivity is also unclear. In that
ontext, a key advantage of solid (and especially polymer) electrolytes is the prospects of allowing large deformation. Existing work
n tuning ionic conductivity through strain is somewhat sparse. The fact that ionic conductivity ought to be impacted by strain is
vident from the pioneering work by Larche and Cahn (1982) in the context of effect of stress on the diffusivity in solids. Indeed
xperiments by Kelly et al. (2016) showed 400% improvement of ionic conductivity in PEO thin films under 15% tensile strain. In
he regime of deformation in the experiments by Kelly et al. (2016), a linear relation between ionic conductivity and strain was
ound. A perspective on pertinent mechanics issues pertaining to ionic conductivity in solid electrolytes may be found in a recent
rticle by Ardebili (2020).

3 In addition, like with electrode materials, there is also significant interest in developing electrolytes that are environmentally friendly and contain abundantly
vailable constituents.

4 Although we have primarily focused on the role of electrolytes (specifically solid electrolytes) in the context of batteries, we remark that soft solid electrolytes
re of significant interest in the burgeoning field of iontronics (Yang and Suo, 2018; Keplinger et al., 2013; Sun et al., 2014).

5 A heavily publicized battery failure incident involved in Boeing 787 Dreamliner airplanes (Williard et al., 2013). A Lithium-ion liquid electrolyte based
attery is quite inflammable and prone to exploding under certain situations.

6 There is also a need for developing batteries that are of irregular shape which is best accomplished via soft materials.
7 There are several types of solid electrolytes which include ceramics (Wang et al., 2015; Bachman et al., 2016), polymer gels (Wang et al., 2002) as well

s solid polymers (Quartarone and Mustarelli, 2011; Fenton, 1973).
8 Liquid electrolytes also are able to wet the electrode much more intimately thus mitigating the issue of interfacial charge transfer across electrode–electrolyte.
9 The ionic conductivity of ceramics and solid polymers are respectively in the order of 10−4 S.cm−1 and below 10−6 S.cm−1 at room temperature (MacGlashan

et al., 1999; Pitawala et al., 2007); This is while their liquid counterparts have the ionic conductivity above 10−3 S.cm−1 at room temperature which is the
necessary condition for the operation of most of the electronic devices.

10 As already indicated, there are other attributes of an electrolyte that are important also such as cation transference number (Gray and Gray, 1991) but a
discussion of that is beyond the scope of the present article.

11 A discussion of the atomistic scale conduction mechanism in solid polymers—whether crystalline ceramics, semi-crystalline polymers or amorphous polymers,
is beyond the scope for the current article. The reader is referred to the following review article for further information (Zou et al., 2020). Suffice to say that
low ionic conductivity of solid polymer electrolytes is attributed to crystallinity.

12 Plasticizers can enhance ionic conductivity however at the cost of mechanical instability (Stephan, 2006; Watanabe et al., 1981)
3
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Although ionic conductors, in various guises, have been an active topic of research, in recent years there has been a focused
nterest on the development of theoretical models that describe the confluence of mechanics, diffusion of ions, and electrostatics in
lectrolytes. In the context of rigid ionic conductors, the ionic transport is well-known to follow the so-called Poisson–Boltzmann–
ernst–Planck equations and are well-studied in the context of semiconductors.13 In the mechanics literature, the theory of

electrolytes has been revisited by numerous groups with varying stylistic choices and emphasis (Xiao and Bhattacharya, 2008;
Hong et al., 2010; Wang and Hong, 2011; Rejovitzky et al., 2015; Grazioli et al., 2019; Zhang et al., 2020a; Ganser et al., 2019;
Narayan et al., 2021; Marshall and Dayal, 2014) and sometimes with applications other than battery-electrolytes e.g. ferroelectric
semiconductors (Xiao and Bhattacharya, 2008), polymer–metal systems for actuation (Narayan et al., 2021) among others. Of course,
frequently, the incorporation of deformation has been a key ingredient in the mechanics literature. In terms of electrolyte behavior
via microstructural design and homogenization, we highlight the work of via Sillamoni and Idiart (2015) who took a first step in
presenting a coarse-graining approach for rigid electrolytes with an inclusion–matrix morphology.

Given the context established in the preceding paragraphs and the key issues and questions that come to the fore, their redressal
is the central goal of our paper. Accordingly, in this paper:

• We establish a suitable theory of ionic conduction in soft deformable solid electrolytes, predicated on the principles of
thermodynamics and continuum mechanics. We have attempted to keep our theory as general as possible so as to allow facile
future modification as well as reduction to special cases such as Biot’s theory of poroelasticity and others.

• Using solutions to simple boundary value problems as a guide, we simplify the homogenization problem for composite
electrolytes (and the otherwise analytically intractable nonlinear partial differential equations) and provide estimates of
effective ionic conductivity. We also establish Hashin–Sthrikman type variational bounds.

• In light of our theory and homogenization results, we attempt to answer the following question: Why do some experiments
show a dramatic improvement in the ionic conductivity of particle-impregnated polymers while others yield a decrease?

• Ionic conductivity of composite electrolytes appears to be size-dependent and contradictory results exist in the literature. How
does our theory reconcile the experimental observations?

• We determine the role of deformation on the emergent ionic conductivity of a solid composite electrolyte.

The outline of the paper is as follows: In Section 2, we present a nonlinear continuum theory for electro-elastic-diffusive solids and
derive relevant constitutive equations. In Section 3, we probe the central idea underpinning the homogenization procedure for the
defined boundary value problem through some simple examples. Based on these, we propose simplified steps for the homogenization
of multiphase electrolytes, and furthermore, establish Hashin–Shtrikman type variational bounds. In Section 4, we discuss examples
of special (solvable) microstructures including 1D multiphase electrolyte, circular fiber inclusions, and spherical inclusions by the
procedure introduced in Section 3. Finally, in Section 5, the obtained homogenized results from Section 4 are compared to the
experimental measurements in the literature as well insights from our model to enhance ionic conductivity of electrolytes.

Notation. For brevity, we use direct notation in this paper. Vectors and tensors are shown by bold symbols such as 𝐚,𝐀. The
inner product between two vectors 𝐚,𝐛 ∈ R3 is defined as 𝐚 ⋅ 𝐛 = (𝐚)𝑖(𝐛)𝑖 and the tensor product between two vectors 𝐚,𝐛 ∈ R3 is
efined as (𝐚⊗𝐛)𝑖𝑗 = (𝐚)𝑖(𝐛)𝑗 . The inner product between matrices 𝐀 and 𝐁 of the same size is defined as 𝐀⋅𝐁 ∶= Tr(𝐀𝑇𝐁) = (𝐀)𝑖𝑗 (𝐁)𝑖𝑗 .

. A continuum theory for electro-elastic-diffusive systems

In this section, we develop a theoretical framework for electro-elastic-diffusive solids. As already alluded to in the prior section,
he central equations, in various forms and derived with different flavors, may be found in the literature (Xiao and Bhattacharya,
008; Hong et al., 2010; Wang and Hong, 2011; Rejovitzky et al., 2015; Grazioli et al., 2019; Zhang et al., 2020a; Ganser et al.,
019; Narayan et al., 2021; Marshall and Dayal, 2014). We favor a slightly different approach in the derivation and arguably, our
andling of the electrostatics distinguishes the derivation from others. We primarily follow the approach by Xiao and Bhattacharya
2008) whose focus was deformable, conducting ferroelectrics and have also used it successfully in a yet another non-equilibrium
etting (Darbaniyan et al., 2019). For simplicity, we begin first with an elastic-diffusive system. Later, in Section 2.2 we extend the
heory to include electrostatics.

.1. Elastic-diffusive systems

As illustrated in Fig. 2, we consider a continuum body in which diffusion of ions (or molecules) is coupled with elasticity. We are
nterested in establishing a continuum model for the elastic-diffusive behaviors of the body that is consistent with the fundamental
hermodynamic laws. To this end, we begin with the assumption that the thermodynamic state of the system is described by
eformation 𝐲(⋅, 𝑡) ∶ 𝛺𝑅 → 𝛺(𝑡) and ion volumetric concentration 𝑐(⋅, 𝑡) ∶ 𝛺𝑅 → R in the reference configuration. As usual, we
enote by

𝐅 = ∇𝐲, 𝐂 = 𝐅𝑇𝐅, 𝐽 = det ∇𝐲

13 We remark here, and this is essentially just our personal opinion, that although well-grounded physically, the usual derivations of the Poisson–Boltzmann–
ernst–Planck equations in physics literature do not follow the systematic postulate-based philosophy of continuum mechanics which we find somewhat
4
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Fig. 2. An elastic-diffusive body subject to external mechanical traction on 𝑆𝑁 , prescribed displacement on 𝑆𝐷 where 𝑆𝐷 = 𝜕𝛺𝑅∕𝑆𝑁 , connected to a solution
of ions on 𝛶𝐷 and prescribed to directional flux perpendicular to the boundary on 𝛶𝑁 where 𝛶𝑁 = 𝜕𝛺𝑅∕𝛶𝐷 . .

the deformation gradient, Cauchy–Green tensor and deformation Jacobian. The interactions between the body 𝛺𝑅 and external
system are defined by a set of mechanical and chemical boundary conditions. As illustrated in Fig. 2, let 𝑆𝐷 and 𝑆𝑁 be a subdivision
of 𝜕𝛺𝑅 on which the following mechanical boundary conditions are enforced:

{

𝐲(𝐱, 𝑡) = 𝐲𝑏(𝐱, 𝑡) on 𝑆𝐷,
applied external traction = 𝐭𝑒(𝐱, 𝑡) on 𝑆𝑁 ,

(1)

where 𝐲𝑏(⋅, 𝑡) (resp. 𝐭𝑒(⋅, 𝑡)) ∶ 𝑆𝐷(resp. 𝑆𝑁 ) → R3 is the prescribed boundary position (resp. traction). Also, let 𝛶𝐷 and 𝛶𝑁 be another
subdivision of 𝜕𝛺𝑅 for prescribing the chemical boundary conditions:

{

𝜇 = 𝜇𝑒(𝐱, 𝑡) on 𝛶𝐷,
𝐉 ⋅ 𝐧 = 𝐽 𝑒 on 𝛶𝑁 ,

(2)

where 𝐉(⋅, 𝑡) ∶ 𝛺𝑅 → R3 (resp. 𝜇(⋅, 𝑡) ∶ 𝛺𝑅 → R) is the ionic flux (resp. chemical potential), and 𝜇𝑒(⋅, 𝑡) ∶ 𝛶𝐷 → R (resp.𝐽 𝑒(⋅, 𝑡)) ∶ 𝛶𝑁 →
R is the prescribed boundary chemical potential (resp. prescribed directional flux perpendicular to the boundary).14 Physically, the
boundary chemical potential 𝜇𝑒 is dictated by the materials of active electrodes. By the conservation law of ions we have15

�̇� + div𝐉 = 0 in 𝛺𝑅. (3)

The external system can do work on the body via mechanical tractions or transport of ions across the boundary. The rate of
work done on the body 𝛺𝑅 is given by

�̇� = ∫𝜕𝛺𝑅

�̇� ⋅ 𝐭𝑒 − ∫𝜕𝛺𝑅

𝜇𝑒𝐉 ⋅ 𝐧. (4)

To achieve a closed differential system governing the elastic-diffusion of the body, we need a few hypotheses concerning the
equilibrium and non-equilibrium behavior of the body. Our first hypothesis concerns the behavior of the body 𝛺𝑅 in equilibrium states.

(H1) The free energy of the body alone is given by the functional:

𝑈 [𝐲, 𝑐] = 𝑈𝑏[𝐲, 𝑐] + 𝑈elect ,

𝑈𝑏[𝐲, 𝑐] = ∫𝛺𝑅

𝛹 (∇𝐲, 𝑐),
(5)

where 𝛹 ∶ R3×3×R → R is the free energy density and 𝑈elect is the electric energy associated with charges and/or polarizations. Since
in this section, we will only consider the coupling of elasticity and diffusion, we set 𝑈elect ≡ 0. For ionic diffusion in an electron-
conductive electrode whose electron-conductivity is much higher than ion-conductivity, the electrode will essentially remain in
an electrically equipotential state (as seen by ions) and thus the present setup does apply to the elastic-diffusive coupling of ions
in electron-conductive electrodes. The electro-elastic-diffusive coupling will be addressed in Section 2.2 for electrolytes that are
ion-conductive but electron-insulating.

We remark that the particular functional form of 𝛹 defines the constitutive behavior of the body in quasi-static isothermal
processes. First of all, by the principles of frame indifference and material symmetries, we have

{

𝛹 (𝐑𝐅, 𝑐) = 𝛹 (𝐅, 𝑐) ∀ 𝐑 ∈ 𝑆𝑂(3),
𝛹 (𝐅𝐐, 𝑐) = 𝛹 (𝐅, 𝑐) ∀ 𝐐 ∈ ,

(6)

14 In what follows, given the physical context of what we are interested in, will shall set 𝐽 𝑒 = 0.
15 Eq. (3) is standard and follows from the mass balance of diffusing species in the absence of sink and source terms as ∫𝛺𝑅

�̇� = − ∫𝜕𝛺𝑅
𝐉 ⋅ 𝐧 for any subbody.

By divergence theorem, this simplifies to ∫ [�̇� + div𝐉] = 0.
5
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where 𝑆𝑂(3) is the set of all rigid rotations and  ⊂ 𝑆𝑂(3) is the group associated with material symmetries. For simplicity, we
ssume that the material is isotropic with  = 𝑆𝑂(3). By (5), the rate of change of free energy of the body in all isothermal processes
s given by

�̇�𝑏 =
𝑑
𝑑𝑡 ∫𝛺𝑅

𝛹 (∇𝐲, 𝑐) = ∫𝛺𝑅

[
𝜕𝛹 (𝐅, 𝑐)

𝜕𝐅
|

|

|

|(∇𝐲,𝑐)
⋅ ∇�̇� + 𝜕𝛹 (𝐅, 𝑐)

𝜕𝑐
|

|

|

|(∇𝐲,𝑐)
�̇�]. (7)

For brevity, we introduce notation:

𝐏 ∶= 𝐷𝐅𝛹 (∇𝐲, 𝑐) = 𝜕𝛹 (𝐅, 𝑐)
𝜕𝐅

|

|

|

|(∇𝐲,𝑐)
, 𝜇 ∶= 𝐷𝑐𝛹 (∇𝐲, 𝑐) = 𝜕𝛹 (𝐅, 𝑐)

𝜕𝑐
|

|

|

|(∇𝐲,𝑐)
. (8)

By substituting (8) into (7) we obtain:

�̇�𝑏 = ∫𝛺𝑅

[𝐏 ⋅ ∇�̇� + �̇�𝜇] = ∫𝛺𝑅

[𝐏 ⋅ ∇�̇� − 𝜇∇ ⋅ 𝐉]

= ∫𝛺𝑅

[−(div𝐏) ⋅ �̇� + 𝐉 ⋅ ∇𝜇] + ∫𝜕𝛺𝑅

[�̇� ⋅ (𝐏𝐧) − (𝐉 ⋅ 𝐧)𝜇],
(9)

here 𝐧 is the outward unit normal on 𝜕𝛺𝑅, the second equality follows from the conservation law (3), and the last equality follows
rom the divergence theorem. Physically, we recognize 𝐏 and 𝜇 as the local internal Piola–Kirchhoff stress and chemical potential

inside the body 𝛺𝑅 in quasi-static isothermal processes, respectively.
The precise functional form of 𝛹 = 𝛹 (𝐅, 𝑐) can in principle be determined by experimental measurements. For example, when

the body is subjected to a uniform external traction 𝐭𝑒 = 𝐏𝑒𝐧 (𝐏𝑒 ∈ R3×3 is constant and 𝐧 is the unit outward normal) and allowed
to exchange ions with an external reservoir with chemical potential 𝜇𝑒, we can measure the equilibrium deformation gradient and
oncentration (𝐅0, 𝑐0) of the body which are assumed to be uniform. Then the total free energy of the system can be identified as

𝐹 [𝐲, 𝑐] = 𝑈𝑏[𝐲, 𝑐] − 𝜇𝑒
∫𝛺𝑅

𝑐 − ∫𝜕𝛺𝑅

𝐲 ⋅ 𝐏𝑒𝐧.

From the principle of minimum free energy, we infer that the equilibrium deformation gradient and concentration (𝐅0, 𝑐0) minimize
the above total free energy and hence necessarily satisfy

𝐏𝑒 =
𝜕𝛹 (𝐅, 𝑐)

𝜕𝐅
|

|

|(𝐅0 ,𝑐0)
, 𝜇𝑒 =

𝜕𝛹 (𝐅, 𝑐)
𝜕𝑐

|

|

|(𝐅0 ,𝑐0)
. (10)

Then the free energy density function 𝛹 = 𝛹 (𝐅, 𝑐) can be obtained by directly integrating the above equations, i.e., from
experimentally measured data: 𝐏𝑒 = 𝐏𝑒(𝐅0, 𝑐0) and 𝜇𝑒 = 𝜇𝑒(𝐅0, 𝑐0).

From the definition and (4), the rate of energy dissipation �̇� = �̇� − �̇� in isothermal processes is given by

�̇� = ∫𝛺𝑅

[(div𝐏) ⋅ �̇� − 𝐉 ⋅ ∇𝜇]

+ ∫𝜕𝛺𝑅

�̇� ⋅ (𝐭𝑒 − 𝐏𝐧) − ∫𝛶𝐷
(𝐉 ⋅ 𝐧)(𝜇𝑒 − 𝜇).

(11)

(H2) By the Second Law of Thermodynamics, the rate of energy dissipation �̇� ≥ 0 for all isothermal processes. To guarantee
this, using Coleman–Noll type arguments, we can propose the following.16

(i) Non-negative rate of energy dissipation by satisfying

−𝐉 ⋅ ∇𝜇 ≥ 0 in 𝛺𝑅. (12)

A choice of a constitutive law which satisfies the aforementioned inequality is proposing a linear relation between the ‘‘drift velocity"
and ‘‘driving force’’ as follows:

𝐯 = −𝛾∇𝜇 i.e. 𝐉 = 𝑐𝐯 = −𝑐𝛾∇𝜇 in 𝛺𝑅, (13)

where 𝛾 > 0 is called the mobility of the ion and assumed to be a material constant and independent ionic concentration 𝑐.
(ii) Instantaneous mechanical balance:

div𝐏 = 0 in 𝛺𝑅. (14)

(iii) Boundary conditions:

𝜇 = 𝜇𝑒 on 𝛶𝐷, 𝐏𝐧 − 𝐭𝑒 = 0 on 𝑆𝑁 . (15)

From (11) and (13)–(15) we find the rate of energy dissipation is given by

�̇� = ∫𝛺𝑅

𝑐𝛾|∇𝜇|2 ≥ 0, (16)

16 There are alternate ways to guarantee compliance with the Second Law and in addition provide guidance on the form of constitutive law, e.g. the maximum
6

ate of entropy production principle, c.f. Xu et al. (2016).
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Fig. 3. Schematic of an ionic conductive electrolyte and its boundaries.

which guarantees the satisfaction of the Second Law for the relevant processes.
To summarize, by (1), (2), (3), (8), and (13)–(15) we obtain the boundary value problem for (𝐲, 𝑐) that governs the elastic-diffusive

isothermal processes:

⎧

⎪

⎨

⎪

⎩

div[𝐷𝐅𝛹 (∇𝐲, 𝑐)] = 0 in 𝛺𝑅,
[𝐷𝐅𝛹 (∇𝐲, 𝑐)]𝐧 − 𝐭𝑒 = 0 on 𝑆𝑁 ,
𝐲 = 𝐲𝑏 on 𝑆𝐷,

(17)

and
⎧

⎪

⎨

⎪

⎩

�̇� = div(𝑐𝛾∇𝜇), 𝜇 = 𝐷𝑐𝛹 (∇𝐲, 𝑐) in 𝛺𝑅,
𝐧 ⋅ ∇𝜇 = 0 on 𝛶𝑁 ,
𝜇 = 𝜇𝑒 on 𝛶𝐷.

(18)

Provided with suitable initial conditions (𝐲(𝐱, 𝑡), 𝑐(𝐱, 𝑡))|𝑡=0 = (�̃�(𝐱), 𝑐(𝐱)), we can solve the above coupled system of differential
Eqs. (17)–(18) to determine the evolution of state variables (𝐲, 𝑐).

We remark that the above formulation of elastic-diffusion is versatile since the free energy density function and the dissipation-
rate density function admit many possible choices. In the Appendix A, we outline the reduction of the current framework to the
classic linear Biot’s theory of poroelasticity and the theory of nonlinear swelling of hydrogels.

2.2. Electro-elastic-diffusive systems

We now consider the effect of electric field on the transport of ions in electrolytes (a schematic is illustrated in Fig. 3). Let
𝜉 ∶ 𝛺𝑅 → R be the electric potential and for simplicity, assume the boundary potential 𝜉𝑒 on 𝛶𝐷 is controlled by an external
circuit:

𝜉 = 𝜉𝑒(𝐱) on 𝛶𝐷. (19)

The mechanical and chemical boundary conditions remain the same as in Section 2.1 and given by (1) and (2), respectively. Further,
denote by 𝑞 the electric charge associated with each mobile ion and therefore, the electrical current density is given by 𝐉𝑒 = 𝑞𝐉. For
the electrolyte body 𝛺𝑅, analogous to (4), we identify the rate of work done to the body as given by Kovetz (2000)

�̇� =∫𝜕𝛺+
𝑅

�̇� ⋅ 𝐭𝑒 − ∫𝜕𝛺+
𝑅

(𝜇𝑒 + 𝑞𝜉𝑒)(𝐉 ⋅ 𝐧) − ∫𝜕𝛺−
𝑅

𝜉( ̇̃𝐃 ⋅ 𝐧), (20)

where �̃� = −𝜖(𝐱)𝐽𝐂−1∇𝜉 is the nominal electric displacement, 𝜕𝛺+
𝑅 (resp. 𝜕𝛺−

𝑅) means the boundary value at the exterior (resp.
interior) of 𝜕𝛺 (as shown in Fig. 3), and [[□]] = □|

|

|𝜕𝛺+
𝑅
−□|

|

|𝜕𝛺+
𝑅

is the jump of □ across the interface. Physically, the first and second
terms in (20) arise from the mechanical work and transport of ions across the interface, and the last term arises from the electric
work in analogy with charging a capacitor. Here, across an interface the electric potential 𝜉 may be discontinuous because of the
presence of chemical potential.

Next, we calculate the rate of change of free energy of the body. It is necessary to include the electrical energy 𝑈elect associated
with polarization and electric field generated by mobile ions and polarization. Neglecting dynamical effects (i.e., the coupling with
time-dependent magnetic fields), the electric field in the reference configuration satisfies the Maxwell equation:

div�̃� = div(−𝜖(𝐱)𝐽𝐂−1∇𝜉) = 𝑞(𝑐 − 𝑐0(𝐱)) in 𝛺𝑅, (21)

where 𝜖(𝐱) is the electric permittivity, and 𝑐0 ∶ 𝛺𝑅 → R is the immobile ion concentration that would neutralize the mobile ions
in a natural equilibrium state. For simplicity, we assume that the electric permittivity of electrolyte is independent of deformation,
i.e.,

𝐩 = −(𝜖 − 𝜖 )∇ 𝜉 in 𝛺, (22)
7
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where 𝜖0 is the vacuum permittivity and 𝐩 represents the polarization in the current configuration. Since ions and electrons are
mobile and ‘‘free’’, from discussions by Liu (Liu, 2013) and (22), we identify the bulk electrical energy 𝑈elect stored in the system
as

𝑈elect [𝐲, 𝑐] = ∫𝛺
[
𝜖0
2
|∇𝐲𝜉|

2 +
|𝐩|2

2(𝜖(𝐱) − 𝜖0)
] = ∫𝛺𝑅

𝜖(𝐱)
2

𝐽 |𝐅−𝑇∇𝜉|2, (23)

here the last equality follows from changing integration variables 𝐲 → 𝐱.
To ensure consistency with the Second Law, we need to calculate the rate of energy dissipation of the system. This calculation is

bit technical and gives rise to the so-called Maxwell stress. The final result and implication is however physically intuitive. First,
y repeating the calculations in (9)–(11), we find that

�̇�𝑏[𝐲, 𝑐] = ∫𝛺𝑅

[−(div𝐏) ⋅ �̇� + 𝐉 ⋅ ∇𝜇] + ∫𝜕𝛺−
𝑅

[�̇� ⋅ (𝐏𝐧) − (𝐉 ⋅ 𝐧)𝜇]. (24)

aking time derivative of (21) we have

∇ ⋅ ̇̃𝐃 = ∇ ⋅ [−𝜖(𝐱) 𝑑
𝑑𝑡

(𝐽𝐂−1∇𝜉)] = 𝑞�̇� in 𝛺𝑅. (25)

For brevity, denote by Darbaniyan et al. (2019)
̇

𝐽𝐂−1 = 𝑑
𝑑𝑡

(𝐽𝐂−1) = −𝐽𝐅−1∇�̇�𝐂−1 − 𝐽𝐂−1(∇�̇�)𝐅−1 + 𝐽 (𝐅−𝑇 ⋅ ∇�̇�)𝐂−1. (26)

ultiplying (25) by 𝜉 and integrating by parts, we obtain

∫𝛺𝑅

𝑞�̇�𝜉 = −∫𝛺𝑅

𝜉∇ ⋅ [𝜖(𝐱) 𝑑
𝑑𝑡

(𝐽𝐂−1∇𝜉)]

= −∫𝜕𝛺−
𝑅

𝜉[𝐧 ⋅
𝑑
𝑑𝑡

(𝜖(𝐱)𝐽𝐂−1∇𝜉)] + ∫𝛺𝑅

𝜖(𝐱)
[

∇𝜉 ⋅
̇

𝐽𝐂−1∇𝜉 + ∇�̇� ⋅ (𝐽𝐂−1∇𝜉)
]

.
(27)

eanwhile, comparing the continuity equation (3) with (25) or by the Maxwell equation 𝐉𝑒+ ̇̃𝐃 = ∇×𝐇 = 0, we identify the electric
urrent density

̇̃𝐃 = −𝜖(𝐱) 𝑑
𝑑𝑡

(𝐽𝐂−1∇𝜉) = −𝐉𝑒 = −𝑞𝐉 in 𝛺𝑅. (28)

Therefore, (27) can be rewritten as

∫𝛺𝑅

𝜖(𝐱)∇�̇� ⋅ (𝐽𝐂−1∇𝜉) = ∫𝛺𝑅

[

−𝜖(𝐱)∇𝜉 ⋅ ̇
𝐽𝐂−1∇𝜉 + 𝑞�̇�𝜉

]

+∫𝜕𝛺−
𝑅

𝑞𝜉(𝐧 ⋅ 𝐉). (29)

Further, by (26) we introduce
𝜖(𝐱)
2

∇𝜉 ⋅
̇

𝐽𝐂−1∇𝜉 =∶ −∇�̇� ⋅𝜮MW,

𝜮MW(𝐱) = −
𝜖(𝐱)
2

𝐽 |𝐅−𝑇∇𝜉|2𝐅−𝑇 + 𝜖(𝐱)𝐽 (𝐅−𝑇∇𝜉)⊗ (𝐅−𝑇∇𝜉).
(30)

Physically we identify 𝜮MW as the Piola–Maxwell stress. In summary, by taking time derivative of (23) we find the rate of change
of electrical energy 𝑈elect as (Xiao and Bhattacharya, 2008):

�̇�elect [𝐲, 𝑐] = ∫𝛺𝑅

[
𝜖(𝐱)
2

∇𝜉 ⋅ (
̇

𝐽𝐂−1∇𝜉) + 𝜖(𝐱)∇�̇� ⋅ (𝐽𝐂−1∇𝜉)]

= ∫𝛺𝑅

[

∇�̇� ⋅𝜮MW + �̇�𝑞𝜉
]

+∫𝜕𝛺−
𝑅

𝑞𝜉(𝐉 ⋅ 𝐧)

= ∫𝛺𝑅

[

−�̇� ⋅ div𝜮MW + 𝐉 ⋅ ∇(𝑞𝜉)
]

+ ∫𝜕𝛺−
𝑅

�̇� ⋅ (𝜮MW)𝐧

(31)

here the last equality follows from (29) and (30).
From (20), (24) and (31) we find that the rate of energy dissipation can be written as

�̇� = �̇� − �̇�𝑏 − �̇�elect

= ∫𝜕𝛺+
𝑅

𝐭𝑒 ⋅ �̇� − ∫𝜕𝛺+
𝑅

(𝐉 ⋅ 𝐧)(𝜇𝑒 + 𝑞𝜉𝑒) + ∫𝛺𝑅

[div(𝐏 +𝜮MW) ⋅ �̇� − 𝐉 ⋅ ∇(𝜇 + 𝑞𝜉)]

+ ∫𝜕𝛺−
𝑅

[−�̇� ⋅ (𝐏 +𝜮MW)𝐧 + (𝐉 ⋅ 𝐧)(𝜇 + 𝑞𝜉)] ≥ 0

(32)

To be consistent with (13)–(14) and guarantee �̇� ≥ 0, as in the preceding section, we identify the following through the usual
Coleman–Noll type arguments:

(i) Nonnegative rate of dissipation
8

− 𝐉 ⋅ ∇(𝜇 + 𝑞𝜉) ≥ 0. (33)
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(ii) Instantaneous interior mechanical balance:

div(𝐏 +𝜮MW) = 0 in 𝛺𝑅. (34)

(iii) Boundary conditions:

(𝐏 +𝜮MW)𝐧 − 𝐭𝑒 = 0 on 𝑆𝑁 ,

{

𝜇𝑒 + 𝑞𝜉𝑒 = 𝜇 + 𝑞𝜉 on 𝛶𝐷,
𝐉 ⋅ 𝐧 = 0 on 𝜕𝛺𝑅 ⧵ 𝛶𝐷.

(35)

A constitutive response that is consistent with the Second of Law of Thermodynamics(i.e. (33)) and arguably represents the most
conventional and simplest choice is the linear mobility/diffusion:

𝐯 = −𝛾(𝐱)∇(𝜇 + 𝑞𝜉), 𝐉 = 𝑐𝐯 in 𝛺𝑅. (36)

For a linearized theory we expand the free energy density at a reference equilibrium state up to quadratic terms for each of the
phases.17:

𝛹 (𝐅, 𝑐; 𝐱) ≈ 1
2
(𝐅 − 𝐈) ⋅ C(𝐱)(𝐅 − 𝐈) + 𝛼el(𝑐 − 𝑐0(𝐱))Tr(𝐅 − 𝐈)

+
𝛽(𝐱)
2

(𝑐 − 𝑐0(𝐱))2 + �̂�(𝐱)(𝑐 − 𝑐0(𝐱)) + 𝛹 (𝐈, 𝑐0; 𝐱),
(37)

where 𝐈 is the identity matrix, �̂� denotes the chemical potential of the pure ion and is often referred to as the standard chemical
potential, and C is the fourth-order elasticity tensor satisfying the usual major and minor symmetries: C𝑖𝑗𝑘𝑙 = C𝑘𝑙𝑖𝑗 = C𝑖𝑗𝑙𝑘. From
microscopic consideration of polymeric solid electrolytes, we anticipate that |C| ∼ 𝑘𝐵𝑇 𝑛𝑎 (𝑛𝑎-active chains density, 𝑘𝐵-Boltzmann
constant, 𝑇 -absolute temperature) (Hong et al., 2010), and the coupling coefficient 𝛼el ∼ −𝑘𝐵𝑇 . For ideal dilute liquid solvents of
ions, the free energy density 𝛹 (𝑐) = 𝑘𝐵𝑇 𝑐 log(𝑐∕𝑐0), giving rise to:

𝛽 =
𝑘𝐵𝑇
𝑐

|

|

|𝑐=𝑐0
, �̂� = 𝑘𝐵𝑇 (log 𝑐∕𝑐0 + 1)||

|𝑐=𝑐0
= 𝑘𝐵𝑇 . (38)

For solid electrolytes, we expect different behavior. Nevertheless, the order of magnitude of these coefficients should be consistent
with (38).

By (8), (34), and (35)1, for the simplified free energy density function (37) we have the boundary value problem for mechanical
balance:

⎧

⎪

⎨

⎪

⎩

div(𝐏 +𝜮MW) = 0, 𝐏 = C(𝐱)∇𝐮 + 𝛼el(𝐱)(𝑐 − 𝑐0(𝐱))𝐈 in 𝛺𝑅,
(𝐏 +𝜮MW)𝐧 − 𝐭𝑒 = 0 on 𝑆𝑁 ,
𝐮 = 𝐮𝑒 on 𝑆𝐷,

(39)

lso, the diffusion equation of ion concentration evolution is given by:
{

�̇� + div𝐉 = 0, 𝐉 = −𝑐𝛾(𝐱)∇(𝜇 + 𝑞𝜉) in 𝛺𝑅,
𝜇 = 𝜇𝑒 on 𝜕𝛺𝑅,

(40)

here by (37) the chemical potential is given by

𝜇(𝐱) = 𝛼el(𝐱)∇ ⋅ 𝐮 + 𝛽(𝐱)(𝑐 − 𝑐0(𝐱)) + �̂�(𝐱). (41)

In summary, Eqs. (39), (21) and (40) form a closed coupled partial differential system for (𝐮, 𝑐, 𝜉).

3. Homogenization of composite electrolytes

The coupled boundary value problem in (21), (39) and (40) is nonlinear for (𝐮, 𝑐, 𝜉). Thus, solving it is a challenge even for simple
geometries, let alone that we are interested in solving this boundary value problem for heterogeneous systems. In a first step, to
gain some insights, we neglect the coupling with elasticity and solve the coupled electro-diffusion system for laminar structures.
Based on the analytical solutions to the laminar structures, we propose some approximations for the homogenization of more general
microstructures.

3.1. A simplified electro-diffusion model

Our general electro-elastic-diffusion model (21), (39) and (40) can be specified to include some of the classical models including
the Poisson–Boltzmann–Nernst–Planck (PBNP) model for electro-diffusion. To see it, we introduce the electrochemical potential

𝜙 = 𝜇 + 𝑞𝜉,

17 For the case of incompressible neo-Hookean solid please refer to the Appendix B.
9
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Fig. 4. Schematic of a battery-like system with a homogeneous electrolyte.

and the Deybe length

𝜆 =

√

𝜖0𝛽
𝑞2

. (42)

By (41) we have

𝑐 − 𝑐0 =
1
𝛽
(𝜙 − 𝑞𝜉 − �̂� − 𝛼el∇ ⋅ 𝐮). (43)

Physically, it is more transparent to rewrite (21), (39), and (40) as a system for (𝜉,𝐮, 𝜙):

⎧

⎪

⎨

⎪

⎩

div(−𝜖𝑟(𝐱)𝐽𝐂−1∇𝜉) + 1
𝜆2
𝜉 = 𝑞

𝜖0𝛽
(𝜙 − �̂� − 𝛼el∇ ⋅ 𝐮) in 𝛺𝑅,

div(𝐏 +𝜮MW) = 0 in 𝛺𝑅,
div[−𝛾𝑐∇𝜙] = �̇� in 𝛺𝑅.

(44)

We observe that for any constants (𝜉0, �̂�0), the system (44) is invariant under the transformation

(𝜉,𝐮, 𝜙; �̂�) → (𝜉 + 𝜉0,𝐮, 𝜙 + 𝑞𝜉0 + �̂�0; �̂� + �̂�0), (45)

implying that an overall constant shift in electric potential or chemical potential does not have any physical consequence.
For small strains with |∇𝐮| ≪ 1 and under appropriate scaling assumption, we may keep only the leading-order contribution of

deformation in (44)1, neglect the Maxwell stress in (44)2, and arrive at a simplified system for (𝜉,𝐮, 𝜙):

⎧

⎪

⎨

⎪

⎩

div(−𝜖𝑟∇𝜉) +
1
𝜆2
𝜉 = 𝑞

𝜖0𝛽
(𝜙 − �̂� − 𝛼el∇ ⋅ 𝐮) in 𝛺𝑅,

div[C∇𝐮 + 𝛼el
𝛽 (𝜙 − 𝑞𝜉 − �̂� − 𝛼el∇ ⋅ 𝐮)𝐈] = 0 in 𝛺𝑅,

div[−𝛾𝑐∇𝜙] = �̇� in 𝛺𝑅.

(46)

If the coupling with elasticity is neglected (i.e., setting 𝛼el = 0), we can rewrite (46) as a system for (𝜉, 𝜙):

⎧

⎪

⎨

⎪

⎩

div(−𝜖𝑟∇𝜉) +
1
𝜆2
𝜉 = 𝑞

𝜖0𝛽
(𝜙 − �̂�) in 𝛺𝑅,

𝑐 − 𝑐0 =
1
𝛽 (𝜙 − 𝑞𝜉 − �̂�) in 𝛺𝑅,

div[−𝛾𝑐∇𝜙] = �̇� in 𝛺𝑅.

(47)

We may recognize that the above system is precisely the PBNP model for coupled electro-diffusion (Zheng and Wei, 2011), where
the Deybe length 𝜆 is the screening length for electrostatic interactions. The Deybe length will pay an important role in our
homogenization analysis since the microstructure length-scale 𝑙, in general, may be much smaller, comparable, or much larger
than 𝜆. We expect distinct effects of microstructure in these regimes.

3.2. Ionic conductivity: definitions and approximations

To demonstrate the fundamental behavior of the PBNP system (46) and lay a ground for homogenization of composite electrolytes
with general microstructures, we consider a simple one-dimensional and homogeneous electrolyte body as sketched in Fig. 4. As we
will show shortly, even a homogeneous electrolyte displays a complex and rich behavior. Suppose that the resistance in the external
circuit is 𝑅 and the electrical potential difference between two charge collectors is ▵𝜉(= 𝜉1−𝜉0). The electrodes (i.e., the cathode and
anode) are electron conductive and consist of active materials that have different chemical potential for the mobile ions, say, Li+.
The geometric changes of electrodes at the contact interfaces are neglected during the charging and discharging processes, though
the chemical reactions, depletion and deposition of materials, and morphology changes across the interfaces between electrodes and
10
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electrolytes dictate the overall performance of the battery. From this viewpoint, we are only interested in the ‘‘instantaneous’’ ionic
conductivity of the electrolytes.

Denote the electrochemical potential, electric potential, and chemical potential on the two electrodes respectively by 𝜙1, 𝜉1, 𝜇1
n the cathode, and 𝜙0, 𝜉0, 𝜇0 on the anode. Then the total current in the external circuit is 𝐼 =▵𝜉∕𝑅. The ionic current density in
he electrolyte is uniform and given by 𝐼∕𝐴 (i.e., ion flux 𝐽 = 𝐼∕𝑞𝐴), where 𝐴 is the normal area of the electrode in contact with
he electrolyte. Consequently, by (47) we have that for steady-states with �̇� ≡ 0,

⎧

⎪

⎨

⎪

⎩

−𝜆2(𝜖𝑟𝜉′)′ + 𝜉 = 1
𝑞 (𝜙 − �̂�) in 𝛺𝑅,

𝑐 − 𝑐0 =
1
𝛽 (𝜙 − 𝑞𝜉 − �̂�) in 𝛺𝑅,

−𝛾𝑐𝜙′ = 𝐽 in 𝛺𝑅.

(48)

For open circuit, 𝑅 → +∞, 𝐽 = 0 and a solution to (48) represents an equilibrium configuration of the system. Based on the
invariance (45), without loss of generality we assume 𝜙 = 𝑞𝜉 + 𝜇 = 0. Then (48)1 can be written as

𝜇′′ − 1
𝜆2𝜖𝑟

𝜇 = − 1
𝜆2𝜖𝑟

�̂� ∀ 𝑥 ∈ (0, 𝑑), (49)

here 𝑑 is the thickness of the electrolyte layer. For prescribed boundary conditions 𝜇(𝑥 = 0) = 𝜇0 + �̂� and 𝜇(𝑥 = 𝑑) = 𝜇1 + �̂�, the
solution to (49) is explicitly given by (𝜆2𝑟 = 𝜆2𝜖𝑟 and 𝜂 = 𝑒−𝑑∕𝜆𝑟 )

𝜇(𝑥) − �̂� = −𝑞𝜉(𝑥) − �̂� =
𝜇0 − 𝜂𝜇1
1 − 𝜂2

𝑒−𝑥∕𝜆𝑟 +
−𝜂𝜇0 + 𝜇1
1 − 𝜂2

𝑒(𝑥−𝑑)∕𝜆𝑟 , (50)

nd hence

𝑐(𝑥) − 𝑐0 =
1
𝛽
(𝜇(𝑥) − �̂�) = 1

𝛽
[
𝜇0 − 𝜂𝜇1
1 − 𝜂2

𝑒−𝑥∕𝜆𝑟 +
−𝜂𝜇0 + 𝜇1
1 − 𝜂2

𝑒(𝑥−𝑑)∕𝜆𝑟 ]. (51)

Next, we consider a non-equilibrium process with ionic flux 𝐽 and external electrical current 𝐼 = 𝑞𝐽𝐴. By definition, the ionic
onductivity 𝐾 of the electrolyte shall satisfy

𝐽 = −𝐾
▵𝜙
𝑑

. (52)

The electrical potential difference between two electrodes satisfies the Ohm’s law for the external circuit:

▵𝜉 = 𝐼𝑅 = 𝑞𝐽𝐴𝑅.

Consequently, the chemical potential difference between cathode and anode is given by

▵𝜇 = 𝜇1 − 𝜇0 =▵𝜙 − 𝑞 ▵𝜉 = −( 𝑑
𝐾𝐴

+ 𝑞2𝑅)𝐴𝐽. (53)

he cathode and anode materials determine the chemical potential difference ▵𝜇 which should be taken as a material constant. The
fficiency of the overall circuit can be defined as the ratio between the external power (consumed by the external resistor) and the
otal power output (due to the stored chemical energy):

𝜂 =
𝐼 ▵𝜉

− ▵𝜇𝐼∕𝑞
=

𝑅𝑞2

𝑞2𝑅 + 𝑑∕𝐾𝐴
= 1 − 1

1 + 𝑞2𝑅𝐾𝐴∕𝑑
. (54)

We now consider the problem of how to determine the ionic conductivity. From the definition (52), we necessarily consider
non-equilibrium process with a transport ionic current 𝐽 ≠ 0. In this case, the coupled PBNP system (48) is nonlinear and not

menable to closed-form solutions. Nevertheless, we can estimate the influence of the transport ionic current on the profile of
hemical potential and mobile ionic concentration. From (48)3, we have

▵𝜙 = 𝜙1 − 𝜙0 = −𝐽𝑑
𝐾

= −∫

𝑑

0

𝐽
𝛾𝑐

𝑑𝑥. (55)

From (49)–(51), we see that the ionic concentration deviates from the natural concentration 𝑐0, and is driven by the chemical
potential on the boundary, which influences the overall ionic conductivity via (55). By (53) and (54), we see that ▵𝜙 = (1 − 𝜂) ▵𝜇.

herefore, if

1 − 𝜂 ≪ 1, i.e., 𝑅 ≫ 𝑑
𝑞2𝐾𝐴

, (56)

e may safely neglect the change of concentration 𝑐 due to the transport ionic current and assume the mobile ion concentration
emains close to the equilibrium concentration (51):

− 𝜙′ = 𝐽
𝛾(𝑐 + 𝑐)

≈ 𝐽
𝛾𝑐

⇒ ▵𝜙 ≈ −𝐽 ∫

𝑑

0

1
𝛾𝑐(𝑥)

𝑑𝑥. (57)

Therefore, the ionic conductivity 𝐾 defined by (52) is given by

𝐾 =
[ 1
𝑑 ∫

𝑑

0

1
𝛾𝑐(𝑥)

𝑑𝑥
]−1

, (58)

where 𝑐(𝑥) is the equilibrium ionic concentration (given by (51) for the system configuration in Fig. 4).
11

It is desirable to simplify the result (58) based on the geometric features of the system. There are three different scenarios.
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w

(i) If the overall size of the body is much greater than the Debye length (𝑑 ≫ 𝜆𝑟), we have 𝜂 = 𝑒−𝑑∕𝜆𝑟 ≪ 1, 𝜇(𝑥) ≈
𝜇0𝑒−𝑥∕𝜆𝑟 + 𝜇1𝑒(𝑥−𝑑)∕𝜆𝑟 , and hence by (51),

𝑐(𝑥) − 𝑐0 ≈
1
𝛽

[

𝜇0𝑒
−𝑥∕𝜆𝑟 + 𝜇1𝑒

(𝑥−𝑑)∕𝜆𝑟
]

. (59)

From the above expression, we see that the interior ion concentration 𝑐(𝑥) ≈ 𝑐0 except at an interface layer of thickness 𝜆𝑟
which, together with the neutralizing charges on the electrode, is referred to as the double layer. Therefore,

𝛾𝑐0𝐾
−1 = 1

𝑑 ∫

𝑑

0

1
1 + 𝜇0

𝛽𝑐0
𝑒−𝑥∕𝜆𝑟 + 𝜇1

𝛽𝑐0
𝑒(𝑥−𝑑)∕𝜆𝑟

𝑑𝑥

= 1 −
𝜆𝑟
𝑑 ∫

𝑑∕𝜆𝑟

0

𝜇0
𝛽𝑐0

𝑒−𝑦 + 𝜇1
𝛽𝑐0

𝑒𝑦−𝑑∕𝜆𝑟

1 + 𝜇0
𝛽𝑐0

𝑒−𝑦 + 𝜇1
𝛽𝑐0

𝑒𝑦−𝑑∕𝜆𝑟
𝑑𝑦

≈ 1 −
𝜆𝑟
𝑑

log(1 +
𝜇0
𝛽𝑐0

)(1 +
𝜇1
𝛽𝑐0

).

(60)

Therefore,

𝐾 =
[ 1
𝑑 ∫

𝑑

0

1
𝛾𝑐(𝑥)

𝑑𝑥
]−1

≈ 𝛾𝑐0. (61)

We remark that this is the typical scenario in applications.
(ii) Though it is unlikely in battery applications, for completeness we may assume 𝑑 ≪ 𝜆𝑟, and hence by (51),

𝑐(𝑥) − 𝑐0 ≈
1
𝛽
(𝑑 − 𝑥

𝑑
𝜇0 +

𝑥
𝑑
𝜇1).

Therefore,

𝐾 =
[ 1
𝑑 ∫

𝑑

0

1
𝛾𝑐(𝑥)

𝑑𝑥
]−1

≈
𝛾(𝜇1 − 𝜇0)

𝛽

[

log
(

𝛽𝑐0 + 𝜇1
𝛽𝑐0 + 𝜇0

)

]−1
. (62)

(iii) If 𝑑 ∼ 𝜆𝑟, there is no obvious way to achieve an approximate solution and we would have to numerically evaluate the ionic
conductivity by the integral in the first line of (60).

3.3. Homogenization: approximations and unit cell problems

In this section we consider composite electrolytes with general microstructure and outline the homogenization procedure and
approximations. For simplicity, we first focus on the PBNP system (47) and assume periodic microstructure in the sense that the
relevant material properties are given by

(𝜖(𝑙)𝑟 (𝐱), 𝛽(𝑙)(𝐱), 𝛾 (𝑙)(𝐱), �̂�(𝑙)(𝐱), 𝑐(𝑙)0 (𝐱)) = (𝜖#𝑟 (
𝐱
𝑙
), 𝛽#( 𝐱

𝑙
), 𝛾#(𝐱

𝑙
), �̂�#(𝐱

𝑙
), 𝑐#0 (

𝐱
𝑙
)), (63)

here �̃� ↦ (𝜖#𝑟 (�̃�), 𝛽
#(�̃�), 𝛾#(�̃�), �̂�#(�̃�), 𝑐#0 (�̃�)) are periodic functions with unit cell 𝐶 = [0, 1)3 and 𝑙 ≪ 𝑑 is the length-scale of the

microstructures of the composite. Our goal is to define the effective ionic conductivity of the composite electrolyte as useful
characteristics of the macroscopic properties of the overall structure. As a coupled nonlinear system for (𝜉, 𝜙), the PBNP system (47) is
not easily amenable to rigorous analysis. Nevertheless, based on our solution to the one dimensional problem discussed in Section 3.2
we are motivated to make the assumption that the local ionic conductivity, i.e., 𝛾𝑐 in (47)2, may be assumed to be independent of
the transport current as long as the transport current is such that (56) is satisfied. In other words, the chemical energy is mostly
converted into work on the external circuit in a discharging process instead of being dissipated into heat due to the resistance of
the electrolyte. This is generally necessary for normal applications unless the battery is short-circuited.

For the equilibrium state, by (45) and without loss of generality we set 𝜙 = 𝑞𝜉 + 𝜇 ≡ 0 and, by (47)1, obtain a boundary value
problem for 𝜇:

{

div(−𝜖(𝑙)𝑟 ∇𝜇) + 1
(𝜆(𝑙))2 𝜇 = 1

(𝜆(𝑙))2 �̂�
(𝑙) in 𝛺𝑅,

𝜇 = 𝜇𝑒 on 𝜕𝛺𝑅,
(64)

where, for simplicity, a Dirichlet-type boundary condition is assumed for the entire boundary of 𝛺𝑅, and material properties
(𝜖(𝑙)𝑟 , 𝜆(𝑙), �̂�(𝑙)) take the form of (63). As a linear differential equation, the solution to (64) can be written as a superposition of two
solutions:

𝜇(𝐱) = �̄�(𝐱) + 𝜇𝑝(𝐱),

where 𝜇𝑝 and �̄� are respectively the solution to
{

div(−𝜖(𝑙)𝑟 ∇𝜇𝑝) +
1

(𝜆(𝑙))2 𝜇𝑝 =
1

(𝜆(𝑙))2 �̂�
(𝑙) in 𝛺𝑅,

3
(65)
12

𝜇𝑝 is periodic with period [0, 𝑙) ,
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and
{

div(−𝜖(𝑙)𝑟 ∇�̄�) + 1
(𝜆(𝑙))2 �̄� = 0 in 𝛺𝑅,

�̄� = 𝜇𝑒 − 𝜇# on 𝜕𝛺𝑅.
(66)

Upon change of variables 𝐱 → �̃� = 𝐱∕𝑙 and rescaling 𝜇#(�̃�) = 𝜇𝑝(𝑙�̃�), (65) can be rewritten as a unit cell problem (c.f., (63)):
{

div�̃�(−𝜖#𝑟∇�̃�𝜇#) + 𝑙2

(𝜆#)2 𝜇
# = 𝑙2

(𝜆#)2 �̂�
# in 𝐶 = [0, 1)3,

periodic boundary condition 𝜕𝐶,
(67)

where the subscript �̃� implies partial derivatives with respect to �̃�, and hence ∇ = 1
𝑙 ∇�̃� and div = 1

𝑙 div�̃�.
Based on the exact solution (c.f., (50)) in one dimension, it is widely accepted that the solution to (66) decays exponentially

to zero away from the boundary 𝜕𝛺𝑅 as 𝜆 → 0 though, to our best knowledge, a rigorous proof cannot be found in the literature.
Therefore, we may neglect the contribution of �̄�(𝐱) in evaluating the local ionic concentration by (47)2 and obtain

𝑐(𝐱) − 𝑐#0 (𝐱∕𝑙) ≈
1

𝛽#(𝐱∕𝑙)
(𝜇#(𝐱∕𝑙) − �̂�#(𝐱∕𝑙)) ∀ 𝐱 ∈ 𝛺𝑅, (68)

where 𝜇# is the solution to the unit cell problem (67).
Since the dependence of ionic concentration on the transport current is neglected, the effective ionic conductivity of the periodic

composite can be found by the classical homogenization procedure (Milton and Sawicki, 2003). In particular, the effective ionic
conductivity tensor 𝐊eff can be variationally defined as

𝐞 ⋅𝐊eff 𝐞 = min
periodic 𝜙∫𝐶

𝐾#(�̃�)|∇𝜙 + 𝐞|2 ∀ 𝐞 ∈ R3. (69)

where

𝐾#(�̃�) ∶= 𝛾#(�̃�)𝑐(𝑙�̃�) = 𝛾#(�̃�)[𝑐#0 (�̃�) +
1

𝛽#(�̃�)
(𝜇#(�̃�) − �̂�#(�̃�))]. (70)

Below we summarize the approximations and procedure to achieve the effective ionic conductivity of the periodic composite
electrolytes. The same procedure will be applied to address the coupled electro-elastic-diffusion system (46).

1. Under the open circuit condition, we find the equilibrium chemical potential of the system by (64). The presence of
heterogeneities, in particular, the differences of intrinsic chemical potential �̂� of constituent phases induce electric fields
across interfaces that are balanced by the actual chemical potential 𝜇 so that the total electrochemical potential 𝜙 = 𝜇 + 𝑞𝜉
vanishes. The actual chemical potential 𝜇 could be significantly different from the intrinsic chemical potential �̂�, and hence
induce a change of equilibrium ionic concentration by (47)2:

𝑐 − 𝑐0 =
1
𝛽
(𝜇 − �̂�). (71)

2. For periodic composite electrolytes with material properties specified by (63), if the Debye length of constituent materials
𝜆(𝑙) ≪ 𝑑 (𝑑 is the lengthscale of the overall composite body), we may safely neglect the boundary effects and focus on the
unit cell problem (65) or (67) to obtain the chemical potential and the local equilibrium ionic concentration by (68).

3. Finally, we consider the non-equilibrium processes and in particular, the diffusion equation (47)3. The variation of ionic
concentration due to nonzero ∇𝜙 is negligible if (56) is satisfied or at the normal working condition of a battery. Then
(47)3 can be recognized as the usual conduction equation with local ionic conductivity 𝛾(𝐱)𝑐(𝐱) = 𝐾#(𝐱∕𝑙) (c.f., (70)). If the
microstructure lengthscale 𝑙 ≪ 𝑑, from the classic homogenization theory we can determine the macroscopic effective ionic
conductivity by the variational problem (69).

3.4. Rigorous bounds

Once the concentration of mobile ions are determined for the equilibrium state under open circuit condition, the local ionic
conductivity of electrolyte is given by (70). As is well-known in the theory of composites, the effective ionic conductivity of composite
is defined by (69) and then satisfies some rigorous bounds. Suppose the effective composite is isotropic with 𝐊eff = 𝐾eff 𝐈. Then the
effective ionic conductivity 𝐾eff satisfies the classical Voigt–Reuss bounds:

�̄� ≤ 𝐾eff ≤ �̄�,

where �̄� and �̄� are respectively the harmonic mean and arithmetic mean of local ionic conductivity:

�̄� = ⟨

1
𝐾# ⟩

−1 ∶=
[

∫𝐶
1

𝐾#(�̃�)
𝑑�̃�

]−1
, �̄� = ⟨𝐾#

⟩ ∶= ∫𝐶
𝐾#(�̃�)𝑑�̃�. (72)

Here and subsequently, ⟨(⋅)⟩ denotes the volumetric average of the quantity (⋅) over the unit cell 𝐶.
13
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Fig. 5. (Left) Schematic of the typical microstructure of a composite polymer electrolyte. (Right) Simplified microstructure modeled in this work.

Much tighter bounds for 𝐾eff can be obtained by the Hashin–Shtrikman’s variational principle (Hashin and Shtrikman, 1962b,a,
1963). The Hashin–Shtrikman’s bounds for continuously varying local conductivity can be conveniently derived following the
argument of Liu (2010) and written as follows:

𝐾𝐿 +
𝑛𝐾𝐿𝛤𝐿
1 − 𝛤𝐿

≤ 𝐾eff ≤ 𝐾𝑈 +
𝑛𝐾𝑈𝛤𝑈
1 − 𝛤𝑈

,

where 𝑛 = 2 or 3 is the dimension of space, and

𝐾𝐿 = min
�̃�∈𝐶

𝐾#(�̃�), 𝐾𝑈 = max
�̃�∈𝐶

𝐾#(�̃�),

𝛤𝐿 =
⟨ 𝐾# −𝐾𝐿

𝐾# + (𝑛 − 1)𝐾𝑈

⟩

, 𝛤𝑈 =
⟨ 𝐾# −𝐾𝑈

𝐾# + (𝑛 − 1)𝐾𝑈

⟩

.

4. Effective ionic conductivity for some special microstructures

In this section, we find the effective ionic conductivities for a few special microstructures including (a) 1D multilayer solid
electrolyte, (b) 3D cylindrical matrix containing rod-like inclusions, and (c) 3D matrix containing spherical inclusions. However,
prior to that, in order to be relevant to typical experimental conditions for soft solid electrolytes, we make some key observations
about what is known regarding the microstructure of multiphase electrolytes and the associated assumptions we have made in our
homogenization models.

4.1. Observations about typical composite electrolyte microstructures and our modeling assumptions

As we have highlighted in the Introduction, typical solid polymer electrolytes suffer from low ionic conductivity due to isotropic
crystallinity (Li et al., 2013). Therefore, any attempt to disrupt the isotropic crystallinity usually improves their ionic conductivity (Li
et al., 2013). This may be achieved by (i) increasing anisotropic crystallinity which tunes the crystallographic texture (Golodnitsky
and Peled, 2000; Minami, 2006) or (ii) generating amorphous regions by disrupting the crystalline structure (Sillamoni and Idiart,
2015).

In our assumptions regarding the microstructure, consistent with our interest in softer solids, we focus on the second notion. This
method of enhancing of the ionic conductivity is possible by the addition of nano-particles which disrupt the crystalline structure
and the resulting composites often have higher ionic conductivity (Zhang et al., 2020b; Johan et al., 2011; Liu et al., 2015; Wang
et al., 2006; Li et al., 2013; Li and Ardebili, 2014). Prior studies have shown that the addition of the fillers act as nucleation sites of
growth of spherulite structures18 (Siekierski et al., 2007) containing the amorphous region and a highly ordered crystalline structure.
Both these regions appear to exhibit high ionic mobility (Johan et al., 2011; Sillamoni and Idiart, 2015). In short, the region in the
vicinity of fillers have a higher ionic mobility in comparison to the unaltered crystalline polymer (Johan et al., 2011; Sillamoni and
Idiart, 2015).

Assuming the filler as the nucleation site for the growth of spherulite structure, the structure around each filler is composed of an
amorphous ring followed by lamellar structure containing ordered crystalline polymer distanced around few nanometers from each

18 The spherulite structures are typically in the order of few micrometers or less since they can be restricted by spacing between particles (Wypych, 2012).
14



Journal of the Mechanics and Physics of Solids 158 (2022) 104621K. Mozaffari et al.
Fig. 6. Schematic of the heterogeneous electrolyte (left) and the unit cell consisting of 𝑛 layers where we have assumed 𝑛 = 3 for illustration purposes (right).

other and amorphous phases in between, and a crystalline polymer phase around as shown in Fig. 5 (left). For further information
we refer the reader to Wypych (2012), Fullerton-Shirey and Maranas (2009).

In this work, we both simplify and (arguably) generalize our thought process. Rather than model the microstructure in Fig. 5
(left) in excruciating detail (which anyway may not hold true for all types of polymer composites), we contend that the simplified
microstructure shown in Fig. 5 (right) is quite general and can account (physically) for a diversity of possibilities. The interphase
layer simply serves as a proxy for any regional change around the fillers which (usually) is highly conductive. In practice, the
thickness of the interphase layer and its properties would require experimental characterization since they would be a function of
the involved materials, characteristics of the phases and fabrication process.

4.2. Ionic conductivity of multi-layer electrolytes

As illustrated in Fig. 6, we first consider a multi-layer solid electrolyte. Denote by 𝜃𝑖 the volume fraction and (𝜖(𝑖)𝑟 ,
√

𝜖0𝛽(𝑖)

𝑞2
, �̂�(𝑖))

(𝑖 = 1,… , 𝑛,
∑𝑛

𝑖=1 𝜃𝑖 = 1) the relevant material properties of the 𝑖th layer. For the equilibrium state under open circuit, by (65) the
microscopic periodic chemical potential 𝜇𝑝 satisfies the ordinary differential equation:

{

−(𝜖𝑟(𝑦)𝜇′
𝑝)

′ + 1
𝜆2(𝑦)𝜇𝑝 =

�̂�(𝑦)
𝜆2(𝑦) ∀ 𝑦 ∈ (0, 𝑙),

𝜇𝑝(0) = 𝜇𝑝(𝑙), 𝜎𝑝(0) = 𝜎𝑝(𝑙)
(73)

where 𝜎𝑝(𝑦) ∶= 𝜖𝑟(𝑦)𝜇′
𝑝(𝑦), and

(𝜖𝑟(𝑦), 𝜆(𝑦), �̂�(𝑦)) = (𝜖(𝑖)𝑟 ,

√

𝜖0𝛽(𝑖)

𝑞2
, �̂�(𝑖)) if 𝑦 ∈ the 𝑖th layer.

We use the method of transfer matrix to solve the boundary value problem (73). This method is based on the continuity of
the potential and electric displacement across interfaces. Suppose that the values of (𝜇𝑝, 𝜎𝑝) at one end of the 𝑗th layer is given by
(𝜇(𝑗), 𝜎(𝑗)). By (73)1 we find that (𝜇𝑝, 𝜎𝑝) at the other end of the layer, denoted by (𝜇(𝑗+1), 𝜎(𝑗+1)), can be written as

[

𝜇(𝑗+1)

𝜎(𝑗+1)

]

= T(𝑗)
[

𝜇(𝑗) − �̂�(𝑗)

𝜎(𝑗)

]

+
[

�̂�(𝑗)

0

]

, (74)

where the transfer matrix T(𝑗) is given by

T(𝑗) = 1
2

⎡

⎢

⎢

⎢

⎣

𝜂 + 𝜂−1 𝜆(𝑗)𝑟

𝜖(𝑗)𝑟
(−𝜂 + 𝜂−1)

𝜖(𝑗)𝑟

𝜆(𝑗)𝑟
(−𝜂 + 𝜂−1) 𝜂 + 𝜂−1

⎤

⎥

⎥

⎥

⎦

, (75)

𝜂 = 𝑒−𝑙𝜃𝑗∕𝜆
(𝑗)
𝑟 , and 𝜆(𝑖)𝑟 =

√

𝜖0𝜖
(𝑖)
𝑟 𝛽(𝑖)

𝑞2
. Imposing the periodic boundary condition (73)2 will determine (𝜇(𝑗), 𝜎(𝑗)) at the interfaces, and

hence the potential 𝜇𝑝(𝑦) as

�̄�𝑝 (𝑧(𝑦)) = �̂�(𝑗) + (𝜇(𝑗) − �̂�(𝑗)) cosh

(

𝑧
𝜆(𝑗)𝑟

)

+
𝜆(𝑗)𝑟 𝜎(𝑗)

𝜖(𝑗)𝑟

sinh

(

𝑧
𝜆(𝑗)𝑟

)

in 𝑧 ∈ (0, 𝑙𝜃𝑗 ), (76)

where �̄�𝑝 (𝑧(𝑦)) ∶= 𝜇𝑝(𝑦) and 𝑧 is the local coordinate of each layer defined by:

𝑧(𝑦) = 𝑦 −

( 𝑖−1
∑

𝑙𝜃𝑗

)

if 𝑦 ∈ the 𝑖th layer. (77)
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Fig. 7. The normalized ionic conductivity versus the volume fraction of the fillers(𝑣𝑓 ∶= 𝑙1∕𝑙) for various interphase extension factors (𝛼). The ionic conductivity is
normalized with the ionic conductivity of the case 𝑣𝑓 = 0 i.e. the homogeneous matrix. The length of the first layer(filler) is fixed at 𝑙1 = 2 nm, 𝛥�̂� = �̂�(3)−�̂�(1) = 1 eV
and �̂�(2) = �̂�(3). Solid lines represent active fillers(high mobility) with 𝛾3 ≪ 𝛾2 = 𝛾1&

𝛾2
𝛾3

= 1000 while the dashed lines represent the case of passive fillers(low

mobility), i.e. 𝛾1 = 𝛾3 ≪ 𝛾2&
𝛾2
𝛾3

= 1000. In both cases, it is assumed that the initial concentration is zero at the filler phase i.e. 𝑐(1)0 = 0 mole∕m3 while 𝑐(2)0 = 𝑐(3)0 = 50

mole∕m3. The numerical values are 𝜆(1)𝑟 = 𝜆(2)𝑟 = 𝜆(3)𝑟 = 4 nm, 𝜖(1)𝑟 = 10 and 𝜖(2)𝑟 = 𝜖(3)𝑟 = 3.

By (71) the concentration of the ions in each layer is obtained as:

𝑐 (𝑧(𝑦)) = 𝑐(𝑗)0 +
(𝜇(𝑗) − �̂�(𝑗))

𝛽(𝑗)
cosh

(

𝑧
𝜆(𝑗)𝑟

)

+
𝜆(𝑗)𝑟 𝜎(𝑗)

𝛽(𝑗)𝜖(𝑗)𝑟

sinh

(

𝑧
𝜆(𝑗)𝑟

)

in 𝑧 ∈ (0, 𝑙𝜃𝑗 ). (78)

Consequently, by (69) the ionic conductivity along 𝐞1 is given by the harmonic mean (58) whereas the ionic conductivity in directions
perpendicular to 𝐞1 is equal to the arithmetic mean (Milton and Sawicki, 2003):

𝐾⟂ = �̄�, (79)

where �̄� is defined in (72).
Based on the physical insights in Section 4.1, as a special case, we present results for a three-layer electrolyte, in which the

layers are composed of (1) crystalline polymer, (2) an interphase region and (3) ceramic filler. Here, we assume an extension around
the filler with length 𝑙int and normalize it to the size of the filler layer as

𝑙int = 𝛼𝑙1 = 𝛼𝜃1𝑙,

where 𝛼 is the constant of proportionality and called interphase extension factor. We emphasize again that the thickness of the
interphase layer is a function of the geometry of the problem, characteristics of the phases and fabrication process.

In the remainder of this section, we present some explicit numerical results. Also the subscripts (superscripts) (1,2,3) in any
variable refer to the filler, interphase region and polymer matrix respectively.

Fig. 7 shows the normalized ionic conductivity versus the volume fraction of the filler 𝑣𝑓 ∶= 𝑙1∕𝑙, for different values of 𝛼 while
the size of the filler is kept at 𝑙1 = 2 nm. Here, we represent the results for both active fillers (high mobility) as well as passive fillers
(low mobility). From this figure, we infer that the ionic conductivity can be enhanced by orders of magnitude by addition of a small
amount of fillers with high interphase extension factor. From a physical point of view, we believe that such a scenario corresponds
to percolation as reported in the literature (Sillamoni and Idiart, 2015; Do et al., 2012) and the maximum ionic conductivity is
obtained in a case where the polymer part of the electrolyte is made up of highly mobile interphase polymer.

Taking a closer look at Fig. 7, we notice an appreciable difference between the enhancement of the ionic conductivity due to
addition of active versus passive fillers; while both active and passive fillers form nucleation sites for the formation of amorphous
highly mobile polymer phase, active fillers also contribute in the ionic transport and thus more enhancement is observed in the
effective ionic conductivity for those.

4.3. Effective ionic conductivity for multilayer solid electrolytes considering mechanical coupling

In the previous section, for simplicity and to gain some insights, we neglected the coupling between electro-diffusion and
elasticity. In this section we investigate the effect of the deformation on the electrolyte ionic conductivity. As illustrated in Fig. 8,
16
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Fig. 8. Schematic of a heterogeneous electrolyte in a 1D setup under average stretch �̄�.

we consider a thin film that is stretched from two ends. For the equilibrium state (𝜙 = 0), from (46) we write the boundary value
problem as:

⎧

⎪

⎨

⎪

⎩

(−𝜖𝑟(𝑥)𝜇′
𝑝)

′ + 1
𝜆2(𝑥)𝜇𝑝 =

1
𝜆2(𝑥) (�̂�(𝑥) + 𝛼el𝑢′) in 𝛺𝑅,

[𝑃 ]′ = 0 𝑃 = 𝐸𝑦(𝑥)𝑢′ +
𝛼el
𝛽 (𝜇𝑝 − �̂�(𝑥) − 𝛼el𝑢′) in 𝛺𝑅,

𝑢(𝑙) − 𝑢(0) = 𝑙�̄� on 𝑆𝑁 ,

(80)

where 𝐸𝑦 denotes the elastic modulus of the body and �̄� is the average strain in the body.
After obtaining the chemical potential and displacement from solving the boundary value problem in (80), the concentration of

the ions in each layer can be obtained. The ionic conductivity in the direction of the ionic transport can be calculated by (58). In
the perpendicular direction, the ionic conductivity can be obtained from (79).

To understand the effect of elasticity on diffusion from another perspective, we now assume that instead of the imposed
displacement, tractions are exerted in the boundaries. Due to the 1D nature of the stated problem in (80), the stress 𝑃 is constant
throughout the body. Therefore, (80)1 and (80)2 can be simplified as

𝜇′′ = 1
�̄�2𝑟

(

𝜇 − �̂� −
𝛼el𝑃
𝐸𝑦

)

(81)

where �̄�2𝑟 = 𝜆2𝑟

(

1 −
𝛼2el∕𝛽
𝐸𝑦

)

. From (81), we observe that the coupling with elasticity has an impact on both the effective Debye length
and �̂�. In other words, the applied stress impacts the �̂� of the system in comparison to the case of without stress.

To examine the role of mechanical deformation in the heterogeneous context, similar to previous section, we solve the boundary
value problem in (80) for a system consist of three layers of (1) filler, (2) interphase region and (3) the polymer matrix; for various
applied strains and obtain the ionic conductivity from (58). Fig. 9 shows the effect of the external loading on the enhancement of
the ionic conductivity. For brevity we provided the normalized ionic conductivity as the ratio of the ionic conductivity with applied
stress to the case of the ionic conductivity of reference homogeneous system without accounting for this mechanical coupling. In
conclusion, stretch can increase ionic conductivity by orders of magnitude since mechanical deformation can increase number of
available ions.

It is instructive to delve a little deeper into the origins of the effect of deformation on ionic conductivity. Physically, stretching
may increase the ionic conductivity in the following two key ways: (1) The polymer chains get aligned leading to easier pathways
for the ions to cross by modifying the mobility of the system; (2) The number of available ions is increased i.e. the equilibrium
ionic concentration is shifted due to mechanical deformation. Modeling the first aspect is beyond the scope of our work and may
be addressed by characterizing a deformation-dependent mobility. The second mechanism (which is accounted for in our model)
is readily understood by a simple toy model. Due to stretching, the configurational entropy of the system increases leading to a
reduction in the free energy. This allows a larger number of ions in the equilibrium configuration. For the toy model, just to drive
this point home, we just consider a chemo-elastic system (without electrostatics) and a one-dimensional homogeneous body under
influence of an imposed strain 𝜖 and chemically exposed to the air i.e. 𝜇 = 0 at two ends. We use the general form of the free
energy density at a reference equilibrium in (37). At steady state, the equilibrium concentration is achieved when the free-energy
is minimized. Thus, minimizing the energy with respect to the concentration of ions, we obtain

𝜕𝛹
𝜕𝑐

= 0 → 𝛼el𝑢
′ + 𝛽(𝑐𝜖0 − 𝑐0) = 0. (82)

Therefore, the concentration of ions under strained condition can be obtained as

𝑐𝜖 = −
𝛼el 𝑢′ + 𝑐0, (83)
17
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Fig. 9. Normalized enhanced ionic conductivity with respect to the average strain for different interphase extensions. The solid (dashed) lines are for the case
of active (passive) fillers. The ionic conductivity is normalized with the case of the homogeneous system. The detailed numerical values are adopted from Fig. 7
caption. Also, 𝑣𝑓 = 0.2, 𝛼el = −10−16 × [80, 3, 3] J, and 𝐸𝑦 = [70, 0.03, 0.03] GPa.

where 𝑐𝜖0 is the equilibrium concentration under strained condition while 𝑐0 (as before) is the equilibrium concentration at zero
imposed deformation. Thermodynamics tells us that 𝛽 must always be positive. The variable 𝛼el, in simple terms, measures the
increase in volume due to change in concentration. This value can, in principle, be either negative or positive, however, typical
materials (e.g. Li-Si system) will swell in volume due to concentration and hence (to the best that we know) this material parameter
typically takes negative values. This then necessarily implies that stretching should lead to an increase in the number of available
ions (i.e. 𝑐𝜖0 > 𝑐0). Accordingly, imposition of a tensile strain on the electrolyte is tied to the increase in the overall concentration of
ions in the system and a consequent enhancement of ionic conductivity. A similar conclusion was also reached by Berg et al. (2018)
who presented experimental data. We remark that the percentage increase in the equilibrium concentration of ions due to strain
scales by the factor − 𝛼el

𝛽𝑐0
. For typical values of these material parameters, as shown in Section 5, even modest tensile strain values

ay lead to three orders of magnitude increase in ionic conductivity.
The linear enhancement of the ionic conductivity due to the applied stretch is reported by numerous experiments (Golodnitsky

nd Peled, 2000; Golodnitsky et al., 2003; Kelly et al., 2016; Minami, 2006) and in Section 5 we will compare our results with the
xperiments in the literature.

.4. Effective ionic conductivity of fiber fillers embedded in cylindrical matrix

We now consider a microstructure of where the matrix is populated with cylindrical fibers with radius of 𝑟(𝑛), as shown in Fig. 10
for 𝑛 = 3. In analogy with (65) we consider the following problem for the microscopic equilibrium state:

⎧

⎪

⎨

⎪

⎩

− div(𝜖𝑟(𝐱)∇𝜇𝑝) +
1

𝜆2(𝐱)
𝜇𝑝 =

1
𝜆2(𝐱)

�̂�(𝐱) if |𝐱| < 𝑟(𝑛),

− 𝜖𝑟(𝐱)(∇𝜇𝑝) ⋅ 𝐞𝑟
|

|

||𝐱|=𝑟(𝑛)
= 0.

(84)

s an example, let the microstructure of the body divided into radial phases in which

(𝜖𝑟(𝐱), 𝜆(𝐱), �̂�(𝐱)) = (𝜖(𝑖)𝑟 ,

√

𝜖0𝛽(𝑖)

𝑞2
, �̂�(𝑖)) if |𝐱| ∈ [𝑟(𝑖−1), 𝑟(𝑖)),

here 𝑟(𝑖−1) and 𝑟(𝑖) are the inner and outer radius of phase 𝑖 and 𝑟(0) is set to 0.
We assume that the body is very long in the direction of the fibers (𝐞3) in comparison to the other dimensions of the

microstructure. Therefore, the problem can be approximated as plane strain. From the axisymmetric nature of the problem, we
set 𝜇 (𝐱) = 𝜇 (𝑟) = 𝐹 (𝑟) + �̂�(𝑟) where 𝑟 = |𝐱| is the magnitude of the position vector on cylindrical coordinate(𝑟, 𝜃, 𝑧). Thus, the
18
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Fig. 10. Schematic of a cylindrical heterogeneous matrix with embedded fibers (right) and the unit cell (left). The unit matrix is assumed to have 𝑛 phases and
here for simplicity we set 𝑛 = 3.

solution in each layer is obtained as:

𝜇𝑝(𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝐽0

(

𝚤𝑟
𝜆(1)𝑟

)

+ �̂�(1) 𝑟 < 𝑟(1),

𝐵𝑖𝐽0

(

𝚤𝑟
𝜆(𝑖)𝑟

)

+ 𝐶𝑖𝑌0

(

− 𝚤𝑟
𝜆(𝑖)𝑟

)

+ �̂�(𝑖) 𝑟(𝑖−1) ≤ 𝑟 < 𝑟(𝑖) for 1 < 𝑖 ≤ 𝑛,

(85)

where 𝜆(𝑗)𝑟 =
√

𝜖0𝜖
(𝑗)
𝑟 𝛽(𝑗)

𝑞2
, 𝚤 is the unit imaginary number and 𝐴, 𝐵𝑖 and 𝐶𝑖 are determined by the boundary and interfacial conditions.

Once the chemical potential is obtained, concentration of the ions can be calculated from (71).
In the next step, we calculate the effective ionic conductivity by solving (69). For the microstructure illustrated in Fig. 10, along

the fiber direction (𝐞3), similar to (79) the effective conductivity is given by the arithmetic mean from (72) as:

𝐾eff
𝐞3

∶= �̄� = ∫𝛺𝑅

𝛾(𝑟)𝑐(𝑟). (86)

On the other hand, the ionic conductivity in the perpendicular direction of the fibers, due to the radial symmetry, can be obtained
by solving the boundary value problem as follows:

{

div[𝐉] = 0, 𝐉 = −𝛾(𝑟)𝑐(𝑟)∇𝜙 in 𝛺𝑅,
𝜙(𝐱) = −�̄�𝐞2 ⋅ 𝐱 at |𝐱| = 𝑟(𝑛),

(87)

where for simplicity we are obtaining the ionic flux in 𝐞2 direction and �̄� is the magnitude of the electric field applied on the
boundaries. We define 𝑓 (𝑟) such that 𝜙(𝐱) = ∇𝑓 (𝑟) ⋅ 𝐞2. Therefore, the flux becomes:

𝐉 = −𝛾(𝑟)𝑐(𝑟)
(

𝜕2𝑓 (𝑟)
𝜕𝑟2

sin(𝜃)𝐞𝑟 +
1
𝑟
𝜕𝑓 (𝑟)
𝜕𝑟

cos(𝜃)𝐞𝜃
)

. (88)

Inserting (88) into (87) and introducing 𝑔(𝑟) = 𝜕𝑓 (𝑟)
𝜕𝑟 , we arrive at:

⎧

⎪

⎨

⎪

⎩

div[𝐉] =
[

−
𝜕
(

𝛾(𝑟)𝑐(𝑟) 𝜕𝑔(𝑟)𝜕𝑟

)

𝜕𝑟 − 1
𝑟

(

𝛾(𝑟)𝑐(𝑟) 𝜕𝑔(𝑟)𝜕𝑟

)

+ 1
𝑟2 (𝛾(𝑟)𝑐(𝑟)𝑔(𝑟))

]

sin(𝜃) = 0,

𝑔(𝑟)||
|𝑟=𝑏

= −�̄�𝑟(𝑛),
(89)

where the continuity conditions at the interfaces are listed as [[𝑔(𝑟)]]=0 and [[𝐉 ⋅ 𝐞𝑟]]=0. Finally, the ionic conductivity in the
perpendicular direction of the fibers is obtained as:

𝐾⟂ ∶= −
⟨𝐉 ⋅ 𝐞2⟩

�̄�
. (90)

In the remainder of the section, as a special case, we obtain the ionic conductivity in fiber direction for the case of a three layer
system, composed of (1) filler(𝑟(1) = 𝑎), (2) interphase region(𝑟(2) = 𝑎(𝛼+1)) and (3) the polymer matrix(𝑟(3) = 𝑏) as shown in Fig. 10
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Fig. 11. Normalized ionic conductivity with respect to the volume fraction of the fibers (𝑣𝑓 ∶= 𝑎2∕𝑏2) for different interphase extension factors 𝛼. The inclusion
radius is kept constant at 𝑎 = 2 nm. It is assumed that 𝛾1 = 𝛾3 and 𝛾2

𝛾1
= 1000, 𝛥�̂� = �̂�(3) − �̂�(1) = 1 eV, �̂�(2) = �̂�(3), 𝑐(1)0 = 0 mole∕m3, 𝑐(2)0 = 𝑐(3)0 = 20 mole∕m3,

(1)
𝑟 = 𝜆(2)𝑟 = 𝜆(3)𝑟 = 4 nm, 𝜖(1)𝑟 = 10 and 𝜖(2)𝑟 = 𝜖(3)𝑟 = 3.

left). Similar to the 1D case, and based on the aforementioned physical insights in Section 4.1 we have assumed that there is
n extension of highly mobile region around the fillers of thickness 𝑙int ( —expressed in a normalized fashion with respect to the
ize of the inclusions as 𝑙int = 𝛼𝑎). Fig. 11 depicts the enhancement of the ionic conductivity in fiber direction due to the addition
f the fillers with volume fraction 𝑣𝑓 ∶= 𝑎2

𝑏2
for various interphase extension factors 𝛼. We can infer from this figure that the ionic

conductivity can be enhanced by orders of magnitude by addition of rod like inclusions in the case of heterogeneous electrolytes.
Also, Fig. 12 provides the enhanced ionic conductivity versus the non-dimensionalized variable 𝑏−𝑎

𝑙int
. We observe that the maximum

ionic conductivity is achievable in the state where the polymer matrix is mostly covered by the interphase polymer. The critical size
of the inclusion can be obtained as:

𝑎𝑐𝑟 = 𝑏 − 𝑙int =
𝑙int

(

1
√𝑣𝑓

− 1
) . (91)

4.5. Effective ionic conductivity of a heterogeneous electrolyte with spherical inclusions

Consider a heterogeneous solid electrolyte body as shown in Fig. 13 (left). We follow the steps of the homogenization that we
discussed in Section 3.3. The microstructure is of radius 𝑟(𝑛), as shown in Fig. 13 (right) for 𝑛 = 3. Assuming steady-state and
equilibrium(𝐉 = 0) and neglecting the mechanical effects (𝛼el = 0), by (47)1 we find:

⎧

⎪

⎨

⎪

⎩

− div(𝜖𝑟(𝐱)∇𝜇𝑝) +
1

𝜆2(𝐱)
𝜇𝑝 =

1
𝜆2(𝐱)

�̂�(𝐱) if |𝐱| < 𝑟(𝑛),

− 𝜖𝑟(𝐱)(∇𝜇𝑝) ⋅ 𝐞𝑟
|

|

||𝐱|=𝑟(𝑛)
= 0.

(92)

We use separation of variables for solving this problem. We set 𝜇𝑝(𝐱) = 𝐹 (𝑟)𝐺(𝜃, 𝜙) where 𝑟 = |𝐱|, 𝜃 and 𝜙 are the magnitudes of 𝐱
n the orthogonal basis of the spherical coordinate. Since we have spherical symmetry in this problem the solution can be obtained
s:

𝜇𝑝(𝐱) = 𝜇𝑝(𝑟) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐴 sinh

(

𝑟

𝜆(1)𝑟

)

𝑟∕𝜆(1)𝑟
+ �̂�(1) 𝑟 ≤ 𝑟(1),

𝐵𝑖 sinh

(

𝑟

𝜆(2)𝑟

)

+𝐶𝑖 cosh

(

𝑟

𝜆(𝑖)𝑟

)

𝑟∕𝜆(𝑖)𝑟
+ �̂�(𝑖) 𝑟(𝑖−1) ≤ 𝑟 < 𝑟(𝑖) for 1 < 𝑖 ≤ 𝑛,

(93)

here 𝐴, 𝐵𝑖 and 𝐶𝑖 are obtained by the continuity conditions at interfaces and boundary conditions. The concentration of ions will
e obtained from (71).
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Fig. 12. Normalized ionic conductivity with respect to the dimensionless parameter 𝑏−𝑎
𝑙int

for various volume fraction of the filler 𝑣𝑓 while the size of the inclusion

is kept constant at 𝑎 = 2 nm. The numerical values are 𝛾1 = 𝛾3 and 𝛾2
𝛾1

= 1000, 𝛥�̂� = �̂�(3) − �̂�(1) = 1 eV, �̂�(2) = �̂�(3), 𝑐(1)0 = 0 mole∕m3, 𝑐(2)0 = 𝑐(3)0 = 20 mole∕m3,
𝜆(1)𝑟 = 𝜆(2)𝑟 = 𝜆(3)𝑟 = 4 nm, 𝜖(1)𝑟 = 10 and 𝜖(2)𝑟 = 𝜖(3)𝑟 = 3.

Fig. 13. Schematic of a battery including heterogeneous solid polymer electrolyte (left) and the microscopic unit cell with 𝑛 radial phases where for illustration
purpose we assumed 𝑛 = 3 (right).

Having the concentration of ions in hand, we solve (47)3 for the potential:
{

div[𝐉] = 0, 𝐉 = −𝛾(𝐱)𝑐(𝐱)∇𝜙 in 𝛺𝑅,
𝜙(𝐱) = −�̄�𝐞3 ⋅ 𝐱 at |𝐱| = 𝑟(𝑛).

(94)

We define 𝑓 (𝑟) such that 𝜙 = ∇𝑓 (𝑟) ⋅ 𝐞3. Inserting it into (94)1 and introducing 𝑔(𝑟) ∶= 𝜕𝑓 (𝑟)
𝜕𝑟 , we obtain:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

div[𝐉] = 1
𝑟2

(

𝜕(−𝑟2𝛾(𝑟)𝑐(𝑟) 𝜕𝑔(𝑟)𝜕𝑟 )
𝜕𝑟 + 2𝛾(𝑟)𝑐(𝑟)𝑔(𝑟)

)

cos(𝜃),

= −cos(𝜃)
𝑟2

(

𝑟2𝛾(𝑟)𝑐(𝑟) 𝜕
2𝑔(𝑟)
𝜕𝑟2

+ 𝜕(𝑟2𝛾(𝑟)𝑐(𝑟))
𝜕𝑟

𝜕𝑔(𝑟)
𝜕𝑟 − 2𝛾(𝑟)𝑐(𝑟)𝑔(𝑟)

)

= 0,

𝑔(𝑟)||
|𝑟=𝑏

= −�̄�𝑟(𝑛),

(95)

where the continuity conditions are listed as [[𝑔(𝑟)]]=0 and [[𝐉 ⋅ 𝐞𝑟]]=0. The ionic conductivity is defined as:

𝐾 ∶= −
⟨𝐉 ⋅ 𝐞3⟩

�̄�
, (96)

In the remainder of the section, as a special case, we obtain the ionic conductivity for the case of a three phase system, composed
of (1) filler(𝑟(1) = 𝑎), (2) interphase region(𝑟(2) = 𝑎(𝛼+1)) and (3) the polymer matrix(𝑟(3) = 𝑏) as shown in Fig. 13 (right). We assume
21
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Fig. 14. Normalized ionic conductivity with respect to the volume fraction of the inclusions (𝑣𝑓 = 𝑎3∕𝑏3) for different interphase extension factors 𝛼. The
inclusion size is kept constant as 𝑎 = 2 nm and for the mobility of each layer it is assumed that 𝛾1 = 𝛾 (𝜃)2 = 𝛾 (𝜃)2 = 1000 × 𝛾3 for solid lines and 𝛾1 = 𝛾3 and
𝛾 (𝜃)2 = 𝛾 (𝑟)2 = 1000 × 𝛾3 for dashed lines . Also 𝛥�̂� = �̂�(3) − �̂�(1) = 1 eV and �̂�(2) = �̂�(3), 𝑐(1)0 = 0 mole∕m3, 𝑐(2)0 = 𝑐(3)0 = 20 mole∕m3 and 𝜆(1)𝑟 = 𝜆(2)𝑟 = 𝜆(3)𝑟 = 4 nm for all
cases and 𝜖(1)𝑟 = 10 and 𝜖(2)𝑟 = 𝜖(3)𝑟 = 3.

that the mobility in the interphase region in radial and angular direction can be expressed by 𝛾 (𝑟)2 and 𝛾 (𝜃)2 which are higher than
the mobility of the polymer matrix. In the remainder of this section, we present some of the numerical results.

Fig. 14 shows the normalized ionic conductivity with respect to the volume fraction of the inclusions for both active and passive
inclusions, while keeping the size of the inclusion constant. Similar to what we have observed in the 1D case, for each choice of
𝛼, by increasing the volume fraction of fillers, we observe a peak and a continuous decrease after that. The interpretation of this
observation is as follows: In the first regime, by increasing the volume fraction of the inclusion, the interphase region covers more
portions of the polymer matrix. As soon as the interphase covers the whole matrix, we observe a peak in the ionic conductivity.
Further increase in the volume fraction would no longer be beneficial to the emergent ionic conductivity due to the decrease in the
available ions. A similar trend has been reported in experiments (Johan et al., 2011; Wang et al., 2006). It is worthwhile to mention
that the enhancement of the ionic conductivity with active fillers is higher and the reason is simple: while both active and passive
inclusions act as nucleation base for the growth of interphase regions, the active inclusions also contribute to the transport of the
ions and consequently enhance the ionic conductivity more effectively. In conclusion, the maximum ionic conductivity is obtained
from a balance between interphase region extension around added particles and the available ions in the system.

For obtaining the characteristics of the maximum ionic conductivity, we have plotted the normalized ionic conductivity with
respect to the dimensionless variable 𝑏−𝑎

𝑙int
which indicates a ratio of the polymer phase to the interphase region in Fig. 15. The

maximum ionic conductivity is exactly at a point where the interphase region covers all the matrix which is at 𝑏−𝑎
𝑙int

= 1. Further,
the critical size of the inclusion is provided by:

𝑎𝑐𝑟 = 𝑏 − 𝑙int =
𝑙int

(

1
3√𝑣𝑓

− 1
) . (97)

5. Connection to experiments

Although we have made scattered remarks in the preceding sections regarding the insights from our model and experiments in
the literature, in this section, we make a more systematic comparison and as well compare the various microstructures addressed
in our work.

Comparing the improvement in the ionic conductivity for the spherical and cylindrical inclusions in Fig. 16, we infer that
the aligned cylindrical inclusions are the most effective way to enhance the ionic conductivity of the composite electrolytes with
otherwise similar characteristics. Apart from the higher peak value of the ionic conductivity enhancement in the cylindrical case,
there are other drawbacks to the use of the spherical inclusion microstructure that have been observed in experimental setups.
For instance, studies reveal that higher fraction of the spherical inclusions have adverse effect on the ionic conductivity for
reasons such as increased tortuosity in the transportation path of the ions (Shen and Chen, 2007), ion trapping and pairing and
22
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Fig. 15. Normalized ionic conductivity with respect to the dimensionless parameter 𝑏−𝑎
𝑙int

for various volume fraction of the filler 𝑣𝑓 while the size of the inclusion

s kept constant at 𝑎 = 2 nm. The numerical values are 𝛾1 = 𝛾3, 𝛾
(𝜃)
2 = 𝛾 (𝑟)2 = 1000 × 𝛾1. Also 𝛥�̂� = �̂�(3) − �̂�(1) = 1 eV and �̂�(2) = �̂�(3), 𝑐(1)0 = 0 mole∕m3, 𝑐(2)0 = 𝑐(3)0 = 20

ole∕m3 and 𝜆(1)𝑟 = 𝜆(2)𝑟 = 𝜆(3)𝑟 = 4 nm for all cases.

Fig. 16. Comparison of the normalized enhanced ionic conductivity with respect to the volume fraction of the inclusions for cylindrical inclusions (solid lines)
and spherical inclusions (dashed lines) for non conductive fillers. The numerical values for cylindrical and spherical inclusions are same as Figs. 11 and 14
captions respectively.

aggregation (Oberdisse, 2006; Gao et al., 2011), while these effects are not central to the cylindrical morphology. This argument is
experimentally proven by Do et al. (2012) and Liu et al. (2017). Further, Do et al. (2012) concluded the same trend as us.

We have also directly compared our model predictions with the results for the enhancement of the ionic conductivity of
homogeneous polymers subjected to applied strain, from Kelly et al. (2016), Berg et al. (2018). As shown in Fig. 17 we observe
a good match between the experimental data and our model for homogeneous materials. The qualitative match is nearly perfect
and shows the linear enhancement of the ionic conductivity due to stretching as observed in the experiments (Kelly et al., 2016;
Berg et al., 2018). We remark here that there is uncertainty in the estimation of certain material parameters. Most of our values
are grounded in the literature or taken from the experimental papers. We have made reasonable choices of unavailable parameters
such as 𝜆𝑟 and 𝛼el to facilitate comparison with the experiments.

We also extracted the data of enhancement of ionic conductivity due to the addition of Al2O3 inclusions to the polymer matrix
from Pitawala et al. (2007) and compared with our model predictions. As can be seen in Fig. 18, our model can well-predict the
23
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Fig. 17. Comparison of the normalized ionic conductivity with respect to the applied stretch between the constructed models and extracted experimental
measurements from Berg et al. (2018), Kelly et al. (2016) respectively. The numerical values are 𝑐0 = 1500 mole∕m3 (Grazioli et al., 2019), 𝜖𝑟 = 8 (Bruce, 1997),
𝐸𝑦 = 0.03 GPa (Maitra et al., 2007). To ensure quantitative agreement we fit the following: 𝜆𝑟 = 4 nm and 𝛼el = −10−15 × [5, 15] J for the Model 1 and Model 2
respectively.

Fig. 18. Comparison of the normalized ionic conductivity with respect to the volume fraction of the inclusions between extracted experimental measure-
ments (Pitawala et al., 2007) and analysis by our model. The numerical values are 𝑐(1)0 = 0 mole∕m3, 𝑐(2)0 = 𝑐(3)0 = 1500 mole∕m3 (Grazioli et al., 2019),
𝛥�̂� = �̂�(3) − �̂�(1) = 1 eV, �̂�(2) = �̂�(3), 𝜆(1)𝑟 = 𝜆(2)𝑟 = 𝜆(3)𝑟 = 4 nm, 𝜖(1)𝑟 = 9 (Rajab et al., 2008) and 𝜖(2)𝑟 = 𝜖(3)𝑟 = 8 (Bruce, 1997) and 𝛾1 = 𝛾3. To ensure quantitative
agreement we fit the following: 𝛼 = 0.57 and 𝛾2∕𝛾1 = 80.

experimental measurements for smaller volume fractions. The trend and numerical disagreement at larger volume fractions is likely
due to effects not considered in our homogenization process e.g. increased tortuosity in the transportation path of the ions (Shen
and Chen, 2007), ion trapping and pairing and aggregation (Oberdisse, 2006; Gao et al., 2011).

6. Concluding remarks

We have presented a theory for the electro-chemo-mechanical behavior of soft deformable solid electrolytes. This general theory
24

is easily adaptable to situations beyond what we have considered. The governing equations are highly coupled and nonlinear
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and rigorous homogenization results for heterogeneous electrolytes are thus difficult to obtain. Guided by the solutions to simple
boundary value problems and the ensuing insights, we have outlined a simple homogenization strategy for obtaining the effective
ionic conductivity of soft heterogeneous electrolytes. Using our approach, we can also easily establish Hashin–Shtrikman bounds.

Experimental observations show that the addition of active/passive fillers to the polymer matrix, results in the growth of an
nterphase region around filler which inherit high mobility (Siekierski et al., 2007; Johan et al., 2011; Sillamoni and Idiart, 2015).
he extent of the interphase region is a function of the microstructure morphology, the materials involved and the fabrication
ethod. The optimum size and volume fraction of fillers which results in higher ionic conductivity is obtained from a competition

etween the interphase extent, the domination of the interphase region in the polymer matrix and the amount of available ions
n the system. While both active and passive fillers to some extent result in the improvement of the ionic conductivity, the active
illers are more effective. The size of the inclusions play a crucial role on the emergent ionic conductivity and the maximum value
s obtained at the critical size of the inclusion introduced in the paper. Roughly speaking, larger inclusions have very low and even
dverse impact in the ionic conductivity of the composite electrolytes. Insofar as deformation is concerned, stretching enhances the
onic conductivity of the composite polymer by increasing the number of available ions and enhancing the mobility of the polymer
atrix.

The contradictory experimental results that exist in the literature regarding the effect of fillers may be explained by the
nsights provided by our model regarding the effect of microstructure length scale vis-a-vis system characteristics like the Debye
ength, among features (such as fabrication method) which are implicitly considered in our work in the sense of how they impact
henomenological features such as interphase extent etc.

We remark that recently several works have appeared that exploit molecular scale mechanisms to design electromechanical
oupling in elastomers (Grasinger et al., 2021; Grasinger and Dayal, 2021; Cohen and deBotton, 2016; Grasinger and Dayal, 2020;
ohen et al., 2016). A similar study, in the context of non-equilibrium property like ionic conductivity, would be an interesting

uture endeavor.
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Appendix A. Recovery of existing models for complex non-equilibrium processes

The formulation presented in Section 2 is versatile and can incorporate a variety of materials models in the literature. Below we
present a few examples.

1. Biot’s poroelasticity. A widely-used elastic-diffusion/permeation model in geophysics concerns the interaction of a porous solid
and fluid where the kinematic variables include the deformation 𝐲 ∶ 𝛺𝑅 → R3 and fluid concentration 𝑐 ∶ 𝛺𝑅 → R+. As a
conservation law independent of energetics of the system, we introduce a primitive concept, the flux of fluid transport 𝐉 ∶ 𝛺𝑅 → R3,
and enforce the conservation law (3) as a constraint:

�̇� + div𝐉 = 0 in 𝛺𝑅. (98)

In the simplest scenario, we assume isotropic linearized elasticity and diffusion for which the free energy functional (5) and the
dissipation-rate functional (16) are postulated as

𝑈𝑏[𝐲, 𝑐] = ∫𝛺𝑅

𝛹 (∇𝐲, 𝑐), �̇�[𝐲, �̇�, 𝑐, �̇�, 𝐉] = ∫𝛺𝑅

𝛾|𝐉|2,

𝛹 (𝐅, 𝑐) = 1
2
(𝐅 − 𝐈) ⋅ C(𝐅 − 𝐈) + 𝛼el(𝑐 − 𝑐0)Tr(𝐅 − 𝐈) + 𝛽

2
(𝑐 − 𝑐0)2,

(99)

respectively. Here, C is the fourth-order isotropic elasticity tensor with shear modulus 𝐺 and Poisson’s ratio 𝜈, 𝛾 > 0 is now called the
permeability coefficient, 𝛽 > 0 is required by stability, and 𝛼 is the coupling coefficients between strain and fluid concentration.
25
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The rate of work done to the system is still identified as (4) at the absence of external body forces and sinks or sources. Upon
repeating the calculations in Section 2.1 or directly from (11), we obtain19

�̇� = �̇� − �̇�𝑏 = ∫𝛺𝑅

[(div𝐏) ⋅ �̇� − 𝐉 ⋅ ∇𝜇]

+ ∫𝜕𝛺𝑅

�̇� ⋅ (𝐭𝑒 − 𝐏𝐧) − ∫𝛶𝐷
(𝐉 ⋅ 𝐧)(𝜇𝑒 − 𝜇),

(100)

where, from (8) and (99),

𝐏 = C(𝐅 − 𝐈) + 𝛼el(𝑐 − 𝑐0)𝐈, 𝜇 = 𝛼elTr(𝐅 − 𝐈) + 𝛽(𝑐 − 𝑐0).

Consequently, by (17) and (18) the governing equations for the poroelasticity model can be written as follows:
{

div(C∇𝐮 + 𝛼el(𝑐 − 𝑐0)𝐈) = 0 in 𝛺𝑅,

�̇� = div(𝛽𝛾∇𝑐 + 𝛾𝛼el∇(∇ ⋅ 𝐮)) in 𝛺𝑅,

which are equivalent to Eq. (81)–(82) in Detournay (1993) upon setting 𝑐0 ≡ 0 and appropriate re-definition of material constants.

2. Nonlinear swelling models of fluid permeable elastomers. Elastomeric gels are permeable to fluids of small molecules. The
gels swell or shrink upon absorption of fluids and fluids can be squeezed out of the gel. A continuum theory for fluid permeable
elastomers has been established in Chester and Anand (2010). Their theory can be recovered from our formulation upon postulating
the following kinematic constraint, free energy density function and dissipation potential:

kinematic constraint: 𝜆𝑠 = (1 + 𝑣𝑐)1∕3,

𝑈𝑏[𝐲, 𝑐] = ∫𝛺𝑅

𝛹 (∇𝐲, 𝑐), �̇�[𝐲, �̇�, 𝑐, �̇�] = ∫𝛺𝑅

𝛾|𝐉|2 + ∇�̇� ⋅ Cvisc∇�̇�,

𝛹 (𝐅, 𝑐) = �̂�𝑐 + 𝛹mix(𝑐) + 𝛹mech(
1
𝜆𝑠

𝐅, 𝑐),

(101)

here 𝑣 characterizes the volume occupied by fluid molecules, Cvisc reflects dissipation associated with strain rate, and 𝛹mix and
mech separate the contribution to the free energy from fluids and elastic deformation. For simplicity, we may neglect viscosity
Cvisc ≡ 0) for slow processes. For a realistic description of elastomeric gels under large deformation, we may necessarily assume
he mobility 𝛾 depend on deformation gradient and concentration and some general forms of 𝛹mix and 𝛹mech.

ppendix B. Elastically incompressible electro-elastic-diffusion model

For soft polymeric materials, it is common to assume elastic incompressibility since the bulk modulus is many orders of magnitude
arger than the shear modulus. On the other hand, the permeation of charged ions (or uncharged molecules) induces significant
olume change of the material. To model this phenomenon, we may enforce a kinematic constraint:

𝛷(𝐅, 𝑐) = det 𝐅 − (1 + 𝜈(𝑐 − 𝑐0)) = 0, (102)

here 𝜈 can be interpreted as the volume of the mobile ions. The constraint (102) can be accounted for in our general formulation
n Section 2.2 by the method of Lagrange multiplier. For instance, assume incompressible neo-Hookean elastic behaviors for the
aterial. In account of the constraint (102), the free energy density of the body 𝛺𝑅 can be written as

𝛹 (𝐅, 𝑐) = 1
2
𝐺(|𝐅|2 − 3) +

𝛽
2
(𝑐 − 𝑐0)2 + �̂�(𝑐 − 𝑐0) −𝛱𝛷(𝐅, 𝑐), (103)

where 𝐺 is the shear modulus, and the direct coupling term 𝛼el(𝑐 − 𝑐0)Tr(𝐅 − 𝐈) between 𝑐 and 𝐅 has to vanish because of elastic
incompressibility. Upon repeating the argument in Section 2.2, we obtain the governing equations:

{

div(𝐏 +𝜮MW) = 0 in 𝛺𝑅,
�̇� = div[𝛾𝑐∇(𝜇 + 𝑞𝜉)] in 𝛺𝑅,

where

𝐏 = 𝐺𝐅 − 𝐽𝛱𝐅−𝑇 , 𝜇 = �̂� + 𝛽(𝑐 − 𝑐0) +𝛱𝜈.

19 To relate with the conventional approach and notation in poroelasticity, say, Detournay (1993), we identify 𝑐 as the fluid content 𝜁 , 𝐉 as the specific discharge
vector 𝐪, and 𝜇 as the pore pressure 𝑝. By some straightforward algebra, we can also identify the correspondence between material constants (𝐺, 𝜈, 𝛼el , 𝛽) with
the materials constants in Eqs. (54)–(57) in Detournay (1993). Further, one may assume the macroscopic Poisson ratio 𝜈 depends on the fluid content 𝑐 so as
26

to recover the exact Eq. (81)–(82) in Detournay (1993).
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