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The cell, as the most fundamental unit of life, is a microcosm of biology in which the confluence of
nearly all aspects of classical physics (mechanics, statistical physics, condensed matter, and
electromagnetism) plays out. This leads to a rich and complex emergent behavior that determines
the entire gamut of biological functions. Specifically, at the cellular scale, mechanical forces and
deformations are inextricably linked to electrical fields (and, to a lesser degree, magnetic fields). This
in turn is responsible for phenomenology such as cell-cell communication, morphological evolution,
cell fusion, self-assembly, cell fission, magnetoreception, endocytosis, and adhesion, among others.
From the viewpoint of biomedicine, cellular response to the combined influence of electrical,
magnetic, and mechanical fields has applications in cancer treatment, targeted transfer of medicine,
gene therapy, and wound amelioration. As an example of the profound influence of the combined
electrical-mechanical coupling, one needs to take cognizance only of the operation of ion channels
that form the basis for our sensing system (such as hearing, sight, and tactile sense). The coupled
mechanical and electromagnetic behavior of a cell is a highly interdisciplinary endeavor and this
review provides a distillation of both the theoretical underpinnings of the subject and the pertinent
biological interpretation. The key developments pertaining to this topic are reviewed, a unified
mathematical framework that couples nonlinear deformation and electromagnetic behavior as
germane for soft biological entities is summarized, gaps in current knowledge are pointed out,
and the central issues that are pertinent to future research are commented upon.
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I. INTRODUCTION

Consider the following observations: (i) An electrical field
may be used to create transient pores in a cell to precisely
inject pertinent genetic material or drug molecules for genetic
therapy and personalized medicine (Tsong, 1989; Weaver and
Chizmadzhev, 1996; Gehl, 2003; Kar et al., 2018). (ii) Some
animals have such a sophisticated ability to detect magnetic
fields (Blakemore, 1975; Lohmann, 1991; Wu and David
Dickman, 2012; O’Neill, 2013) that they not only can infer
north-south directionality (Johnsen and Lohmann, 2005b;
Wiltschko and Wiltschko, 2005; Wiltschko, 2012) but also
possess a “low-resolution Global Positioning System” that
allows them to ascertain their actual location (Wiltschko and
Wiltschko, 1972, 2003; Lohmann and Lohmann, 2006;
Lohmann, Lohmann, and Putman, 2007; Lohmann, 2010).
(iii) The hair cells in the mammalian auditory system use a
complex electromechanical transduction mechanism that per-
mits (in humans) a frequency discrimination of 1=30th of a
piano semitone, an auditory range of 3 orders of magnitude,
and the capability of handling millionfold variations in sound
amplitude (Martin and Hudspeth, 2001; Deng, Liu, and
Sharma, 2014a; Hudspeth, 2014; Deng et al., 2019). These
three observations are just a few of many that underscore the
significance of the combined effects of deformation and
electromagnetic fields on biological cells and the implications
of these effects.
Figure 1 graphically highlights much of the phenomenol-

ogy as well as applications that relate to the central theme
of this review. It is instructive to examine some of these
applications in more detail. One of the defining physical
characteristics of a cell is its extreme mechanical “softness,”
i.e., its propensity to mechanically deform. This necessarily
implies that even modest electrical fields are able to induce
pronounced mechanical forces on the cell and the subcellular
structures. In other words, deformation and/or mechanical
forces are inextricably linked with electrical field effects.
A cell exposed to an electrical field therefore can exhibit a
rich spectrum of morphological changes that have been well
documented in experiments (Dimova et al., 2009). It is
worthwhile to make a special mention of the cell membrane,
which is complicit in several interesting aspects of cellular
reaction to electrical and magnetic fields. The typical cell
membrane is just a few nanometers thick and consists
primarily of phospholipid molecules and embedded proteins.
The membrane is dielectric in nature and is the envelope
through which cells and organelles interact with their envi-
ronment. In particular, cellular membranes serve as the

“gatekeepers” for the cells and vesicles and, through ion
channels, facilitate the transport of chemicals, mechanical
and electrical signaling, transduction, and adhesion. Imposed
electrical fields, due to the so-called Maxwell stress effect or
electrostriction,1 can cause thinning of the membrane and
consequently generate mechanical tension in the plane of the
cell membrane. The in-plane tension can potentially impact the
operation of ion channels, although this notion is still rather
speculative (Gullingsrud and Schulten, 2004; Reeves et al.,
2008; Schmidt and MacKinnon, 2008). Likewise, the bending
of membranes can lead to the generation of electrical fields
due to a phenomenon called flexoelectricity, which has been
speculated to cause [in addition to impacting the operation of
ion channels (Petrov et al., 1993; Petrov, 2002)] dynamical
instabilities in the oscillation of hair cells, which play a critical
role in the hearing mechanism (Deng et al., 2019).
While modest exogenous electric fields will merely deform

the cell as a whole and cause thinning of the membrane,
increased intensity can lead to a form of instability that opens
up pores in the membrane structure (Gehl, 2003). This
phenomenon of electroporation, which was alluded to earlier,
is of interest from a fundamental science viewpoint due to its
status as an essential intermediate step in biological processes
such as fusion. Following the formation of nanoscale pores in
the cell membrane, depending on the precise nature of the
applied electric field, the cell either can survive by resealing
the pores (reversible electroporation) or can fail to recover
its homeostasis (irreversible electroporation). In particular,
reversible electroporation may be used to transport chemical
species into the cell (Tsong, 1989; Gothelf, Mir, and Gehl,
2003; Kar et al., 2018), while irreversible electroporation has
found applications in cancer cell treatment (Lee, Thai, and Kee,
2010; Thomson, 2010). If electroporation is simultaneously
exercised on two adjoining cells, short intense electrical pulses
may catalyze cell fusion (electrofusion) (Zimmermann, 1982).
Cell fusion is a critical step in a number of biological processes,
such as embryogenesis (Oren-Suissa and Podbilewicz, 2007),
the differentiation of muscle cells (Sampath, Sampath, and
Millay, 2018), therapy for organ transplantation (Sullivan and
Eggan, 2006), and other processes (Harris, 1970). The key
electromechanical reaction pathways that lead to electrofusion
are rich and still a topic of active research. We remark as an
aside that cell electroporation and electrofusion triggered by
lightning has been suggested to be instrumental in the gene
transfer of prokaryotes during evolution (Kotnik, 2013).
Electromechanics also appears to regulate volume in a class
of tissue cells, which is critical for phenomena such as cell
growth (Yellin et al., 2018).
Although the theoretical treatment of magnetic effects has

significant parallels with the handling of electrical fields, the
effect of magnetic fields on biological cells is more subtle and
arguably more controversial. The key difference between the
two, despite a close mathematical similarity, lies in the fact

1The Maxwell stress effect and electrostriction are two physically
distinct electromechanical mechanisms, although they are math-
ematically identical. We discuss the distinction in Sec. II, but for
the purpose of discussion there is no loss of generality in using them
interchangeably.
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that all materials have a dielectric permittivity that is different
from the vacuum (and hence are polarizable). In sharp
contrast, with the exception of a few, most natural materials
have a magnetic permeability that is the same as the vacuum
(and hence are not magnetizable). In other words, most
materials are transparent to magnetic fields and mechanisms
analogous to the Maxwell stress effect or electrostriction
(namely, magnetostriction) tend to be nonexistent or negli-
gible. That said, the magnetic field can couple with deforma-
tion if the intercellular region is filled with a ferrofluid
and/or is in the presence of ferrite particles that may
appreciably enhance the magnetic permeability of the cell
or its membrane. The origins of the well-studied phenomenon
of magnetoreception in animals [see Johnsen and Lohmann
(2005b) and references therein], which is tantalizing and has
recently also been speculated about in humans (Wang et al.,
2019), remains an enduring mystery and a somewhat con-
troversial subject. Accordingly, in this review the nuanced
discussion of magnetic field coupling with deformation and its
interaction with biological cells is discussed separately from
that of electric fields.
An understanding of the coupled effects of mechanical

deformation and electromagnetic effects on biological cells
requires a highly multidisciplinary approach: applied math-
ematics, biology, nearly all of classical physics,2 and continuum
mechanics. Therein lies both the richness and the complexity

of the subject. In particular, when one is contending with the
soft mechanical nature of the cells and cell membranes,
nonlinear continuum mechanics must be invoked. Large
deformations therefore also require being cognizant of
instabilities and bifurcations that are exhibited by cellular
structures. A single review cannot be simultaneously rig-
orous and comprehensive enough to do justice to the
complex subject matter discussed here. Our aspirations are
therefore modest. We target the uniqueness of our review at
an emphasis on a physics-based understanding of the subject
matter predicated on a unifying theoretical treatment that
attempts to tie the various subtopics to a single setting. In
addition, we guide the reader, using simple (sometimes even
toy) examples, to the basics of each subtopic and then in that
context present the state of the art in the pertinent literature.
We do not focus on experimental methods and details of the
extensive experiments conducted on the theme of our review.
We invoke the key experimental findings selectively when,
aided by the relevant theoretical underpinning, the results
enhance our understanding of a particular phenomenon. This
is not to imply that we cede less importance to experiments,
rather that we have limited the scope of our review to a
physics-based interpretation as opposed to pure phenom-
enology. To elaborate on the scope of the review, it is
germane to mention that modeling of the combined defor-
mation and electromagnetic effects may proceed on several
fronts: classical molecular dynamics, Monte Carlo, coarse-
grained atomistic simulations, or a field theoretic partial
differential equation–based approach, among many other
variations thereof. Consistent with our earlier stated goals,
we are agnostic to the methodology per se and emphasize the
approach that best facilitates the development of intuition

FIG. 1. The combined effect of deformation and electro-magnetic fields on biological cells manifests in myriad ways: (a) operation of
ion channels, (b) impact on our nervous system, (c) the hearing mechanism, (d) dynamics of auditory hair cells, (e) cellular
electroporation, (f) its applications in cell fusion and drug delivery, and (g),(h) magnetoreception in selected animals.

2Although we do not discuss the role of quantum mechanics here,
the intersection of quantum effects in a biological context is a rapidly
evolving field; see Lambert et al. (2013), Marais et al. (2018),
McFadden and Al-Khalili (2018), Cao et al. (2020), and references
therein.
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about the subject matter. Accordingly, simple analytical
models and continuum theories are overemphasized.
Given the breadth of the topic of this review, we must

understandably omit some topics. The electrophoretic
response of biological cells (Mehrishi and Bauer, 2002),
defined as their motion relative to the solution due to the
effect of a spatially uniform electric field, provides informa-
tion about the electrical and mechanical properties of the cell
surface (Mehrishi and Bauer, 2002; Kremser, Blaas, and
Kenndler, 2004) and also has applications in cell motility
(Ross, 2017). The technique has also been implemented for
cell separation. However, owing to the complexity of the basic
science behind the technique from a biological and physical
point of view, it is used mostly to separate biomolecules rather
than cells (Bhagat et al., 2010). Indeed, the electrophoretic
response of biomolecules has gained much interest due its
application in DNA separation (Carle, Frank, and Olson,
1986; Kaji et al., 2004) and detecting protein–nucleic acid
interactions (Hellman and Fried, 2007). Since electrophoresis
is relatively less relevant in cells, we exclude this topic,
although we discuss dielectrophoresis in detail. Exposure of a
biological cell to electromagnetic fields can affect not only the
cell in its entirety and its lipid membrane but also the
subcellular organelles and the biomolecules. For instance, it
has been shown that an electric field can manipulate the
microtubules (Stracke et al., 2002; Jia et al., 2004; Van den
et al., 2006; Chafai et al., 2019) and actin filaments (Riveline
et al., 1998) of the cytoskeleton, which are the main regulators
of the shape and structure of biological cells. It has also been
suggested that the proteins can undergo conformational
changes under the effect of an electromagnetic field
(Laurence et al., 2000; Mancinelli et al., 2004; English and
Mooney, 2007; English, Solomentsev, and O’Brien, 2009).
Similar effects can occur for other kinds of biomolecules, such
as enzymes (Zhao and Yang, 2010), peptides (Toschi et al.,
2009; Todorova et al., 2016; Liang, Cheng, and Wang, 2018),
and DNA molecules (Heng et al., 2005). These effects are
beyond the scope of this review. Further, for the majority of
the phenomena discussed in this review, there are molecular-
level and electrochemical descriptions that may provide
additional insights into the underlying mechanisms. An
example of such a description is electroporation, where a
lipid membrane is exposed to microsecond and millisecond
pulsed electric fields. Evidence indicates that exposure of a
lipid membrane to these pulses results in the generation of
reactive oxygen species and induces oxidative damage of
unsaturated lipids that are correlated with membrane per-
meability (Gabriel and Teissie, 1994; Boonnoy et al., 2015).
Molecular dynamics simulations suggest that during electro-
poration the pulsed electric field, in addition to increasing
membrane permeability, can affect membrane proteins and
create conductive pores in the voltage-sensor domains of
voltage-gated ion channels (Rems et al., 2020), which serve as
a gating mechanism of ion channels where the electric field
may affect the conformational change of the protein structure
of the channel. Evidently, this mechanism is extremely
sensitive to the pH level of the extracellular medium and
acidification reduces the magnitude of the ion-channel current
(Trapani and Korn, 2003). The solution pH itself is a major
contributor to the behavior of biological processes that involve

lipid membranes. The pH levels of extracellular and intra-
cellular fluids are ∼7.4 and ∼7, respectively. However,
biological membranes can be exposed to environments with
different pH values that for apical membranes of gastric
surface mucus cells in a mammalian stomach can be as low
as < 1 to 6 and still keep their integrity (Barreto and
Lichtenberger, 1992). This has inspired researchers to inves-
tigate the interaction between biological membranes and
hydroxide ions and protons to understand mechanisms that
allow cells to maintain their structures in such environments.
These studies include the effect of change in the pH level
on the lateral phase separation (Smaby, Muderhwa, and
Brockman, 1994; Furuike et al., 1999), membrane interfacial
tension (Harlos, Stümpel, and Eibl, 1979; Petelska and
Figaszewski, 2002), ionic penetration to nanopores
(Buyukdagli, Manghi, and Palmeri, 2011), and membrane
mechanics and electrostatics (Zhou and Raphael, 2007). We
deliberately avoid delving into more details about the pre-
viously mentioned effects indicated, primarily due to the
limitation of continuum theories in describing the complexity
of intermolecular interactions. For further information, see
Kotnik et al. (2019) and related works.
While it is not easily possible to use simple theoretical

methods and continuum theories to provide molecular-level
descriptions of biological processes such as the gating
mechanism of ion channels and lipid-protein interactions,
there are other microscopic-level computational approaches
that can be employed. A popular and increasingly important
approach to interrogating biophysical phenomena is via
atomistic simulations. Indeed, atomistic methods (in the form
of coarse-grained molecular dynamics, Monte Carlo, or all-
atom calculations) have been used in nearly all the topics that
we cover in this review, electroporation (Böckmann et al.,
2008; Delemotte and Tarek, 2012; Kotnik et al., 2019), ion
transport (Gurtovenko and Vattulainen, 2005; Peter and
Hummer, 2005), and gating mechanisms in ion channels
(Maffeo et al., 2012; Flood et al., 2019), among others.
Despite the large number of studies on ion channels using
molecular dynamics simulations, there are several limitations
that relate to the availability of an atomic-resolution structure
of the ion channel, the development of an accurate force
field, and the computational limitation inherent in molecular
dynamics approaches to handling large size scales and long
timescales that are relevant to biophysical phenomena. The
insights that have been recorded in works on atomistic
simulations can be important, but given our stated goals
we cite only a few such works and only when warranted by
the context.
This review is organized as follows. In Sec. II, we present a

unified theoretical framework that allows a facile inclusion of
electrical fields and nonlinear deformation in a single varia-
tional setting and permits the identification of the key
electromechanical coupling mechanisms relevant for soft
and biological matter. Specifically, we also outline how the
theories typically used in the biophysical literature (such as the
Helfrich formulation of membranes) follow from the three-
dimensional equations of electricity when specialized to
slender (thin) objects. Our exposition also allows for an easy
extension in the subsequent sections, where magnetic effects
are discussed. Section II is an important starting point for the
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conceptual understanding of the key equations underpinning
the relevant phenomena that follow in later sections. In
Sec. III, we present the motion of cells under electrical fields.
In Sec. IV, we discuss deformation of cells, specifically the
behavior of lipid membranes under electrical fields, and
examine phenomena such as electrodeformation, electropora-
tion, and electrofusion. Arguably one of the most well-
documented fields of study has been the effect of electrical
fields on ion channels; this topic is discussed in Sec. V along
with the ramifications of voltage sensing in lipid membranes.
In particular, we also present a case study illustrating how
deformation coupling with electrical fields and ion channels
can impact a sensory mechanism (hearing). As alluded to
earlier, although magnetic fields can be mathematically treated
in a manner similar to electrical fields, there are subtle
differences that justify a separate section (Sec. VI) where
we present both the mathematical framework necessary to
understand magnetic coupling with cell deformation and the
its implications, particularly the phenomenon of magneto-
reception. We conclude in Sec. VII, where we highlight topics
that defy the ready classification inherent in Sec. VI, mention
those that are inadequately covered, and suggest topics that the
interested reader may consider for further study.

II. THEORY OF ELECTRIC-FIELD-DEFORMATION
INTERACTION IN CELLS

A. Mechanisms for electromechanical coupling

The mechanisms that mediate coupling between mechani-
cal deformation and electrical fields could be one of the
following (Fig. 2): (i) piezoelectricity, (ii) Maxwell stress or
electrostriction, (iii) flexoelectricity, and finally (iv) ionic
diffusion.
The first of them, piezoelectricity, is arguably the most well

known in the materials physics community and perhaps the
least relevant in the context of biological cells. As we further
elaborate on in this section, piezoelectricity entails a linear
relation between the development of electrical polarization in

a material in response to a uniform deformation or stress (and
vice versa). Only crystalline dielectrics that have a certain type
of anisotropy (notably a lack of mirror symmetry) can exhibit
this phenomenon and, accordingly, typically only a few
mechanically hard, crystalline ceramics possess this property
(Nowick, 2005). Given the lack of any crystalline order in
biological cells and its constituents, the absence of conven-
tional piezoelectricity is hardly surprising. Some soft matter
that appears to be piezoelectric or even ferroelectric is a result
of other mechanisms masquerading as piezoelectricity.3

The Maxwell stress effect and electrostriction are universal
phenomena and are present in all dielectrics. Essentially, upon
the application of an electric field, all bodies deform due to
electrostatic forces that develop on the opposing electrodes.
The Maxwell stress is proportional to E2, where E is the
applied electric field. This force is modest unless a large
voltage difference is imposed and the mechanical stiffness of
the material is small. This implies that only soft dielectrics
such as elastomers and biological matter deform appreciably
for practically feasible applied electric fields. A key distinc-
tion compared to piezoelectricity is that the Maxwell stress is a
one-way coupling, and thus while an electric field will
generate deformation a mechanical stress will not induce
any electricity. In this review we do not distinguish between
the Maxwell stress effect and electrostriction, since they are

FIG. 2. Various mechanisms of electromechanical coupling. (a) Piezoelectricity. A direct linear coupling between uniform mechanical
strain (or stress) and electrical field (or polarization) usually present only in certain crystalline dielectrics that lack centrosymmetry.
(b) Maxwell stress or electrostriction. A universal phenomenon present in all materials that refers to the deformation due to the
electrostatic forces developed on the opposing electrodes under the application of an electric field. (c) Flexoelectricity. A universal
phenomenon present in all dielectrics that refers to the notion that nonuniform deformation (such as bending) can induce electrical fields
in any material by a rearrangement of atoms and consequently charge distribution (even those that are nominally nonpiezoelectric).
(d) Ionic diffusion. Under the action of an electrical field, ions preferentially migrate toward one of the electrodes, thus causing a time-
dependent deformation. Conversely, mechanical stresses can alter the electrochemical potential and thus provide the driving force for
diffusion.

3For instance, frozen dipoles and charges in sufficiently soft (and
even amorphous, manifestly isotropic) materials, together with the
action of Maxwell stress or electrostriction, can exhibit a piezoelectric-
like behavior. Suchmaterials are known as electrets (Neugschwandtner
et al., 2000; Bauer, Gerhard-Multhaupt, and Sessler, 2004; Liu et al.,
2012; Rahmati, Bauer, and Sharma, 2019; Apte et al., 2020). Besides,
apparent piezoelectricity can be promoted by novel material designs
adopting gradual change in material properties or architected design at
the microscopic level (Mbarki et al., 2014; Grasinger, Mozaffari, and
Sharma, 2021). Apparent piezoelectricity (or even ferroelectric behav-
ior) at the tissue level is well known (Fukada and Yasuda, 1957; Lang,
2000; Liu et al., 2012, 2014).
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mathematically similar and this distinction does not impact the
central message of our review.4

Piezoelectricity is a linear coupling between uniform
mechanical strain (or stress) and an electrical field (or
polarization). As stated earlier, only materials that have
broken mirror symmetry in their microstructure are able to
exhibit this effect. However, an inhomogeneous strain can
locally break mirror symmetry. The coupling between strain
gradients and polarization is the phenomenon of flexoelec-
tricity (Tagantsev, 1986; Nguyen et al., 2013; Zubko, Catalan,
and Tagantsev, 2013; Mao and Purohit, 2014; Ahmadpoor and
Sharma, 2015; Krichen and Sharma, 2016). Much like
electrostriction, and unlike piezoelectricity, flexoelectricity
is a universal phenomenon and is present in all dielectrics. The
coupling may be weak and the effect may be negligible;
however, all insulators are capable of being polarized when
subjected to strain gradients. This is of profound importance in
the biological context (especially at the cellular level), where
the noncentrosymmetry of the microstructure5 is hard to come
by (Petrov, 1975, 2002; Petrov and Mircevova, 1986; Raphael,
Popel, and Brownell, 2000; Brownell et al., 2001; Rey, 2006;
Spector et al., 2006; Gao et al., 2008; Breneman, Brownell,
and Rabbitt, 2009; Breneman and Rabbitt, 2009; Sachs,
Brownell, and Petrov, 2009; Abou-Dakka, Herrera-
Valencia, and Rey, 2012; Liu and Sharma, 2013; Deng,
Liu, and Sharma, 2014b; Ahmadpoor and Sharma, 2015;
Deng et al., 2019; Mozaffari, Ahmadpoor, and Sharma, 2021).
For a biological membrane, flexoelectricity is simply the
change in the dipole moment upon changes in the curvature: a
convenient electromechanical coupling mechanism since bio-
logical membranes bend easily.
Ionic diffusion plays a crucial role in regulating cellular

function. However, lipid bilayers are not permeable to ions
and the ions cannot easily pass through the membrane by the
normal diffusion process mediated by concentration gradients
or, more broadly, differential chemical potential. For passing
through, ions need a channel formed by special proteins that
facilitate this action. These narrow channels allow the ions to
pass through by normal diffusion without the resistance of the
lipid bilayer. Mechanical deformation is well known to alter
the electrochemical potential and thus can directly impact the
diffusion process (Larche and Cahn, 1978; Larcht’e and Cahn,
1982; Hong et al., 2008; Anand, 2012; Di Leo, Rejovitzky,
and Anand, 2014; Grazioli et al., 2019). In addition, diffusion
of ions (driven by electrical fields) can cause a time-dependent
deformation owing to the fact that ions migrate preferentially
to one of the electrodes. For instance, the undulation of a
membrane under the effect of an electric field may be
enhanced by the unbalanced electric stress resulting from

the ion current in the membrane (Sens and Isambert, 2002).
Because of this mechanism, a thin film containing mobile ions
will typically bend under the influence of an electrical field. In
an intriguing work (Harland et al., 2010), it was shown how
ion transport may couple with mechanical deformation such
that applied voltage may cause a bending of the lipid
membranes. In that sense, Harland et al. (2010) provided a
model to assess the contribution of ion diffusion to the
mechanism of flexoelectricity. This concept is also used
extensively in materials science to create so-called ionic
polymer–metal composites and ionic gels to serve as actuators
and sensors and includes biomedical applications such as
artificial muscles (Shahinpoor, 1999; Bar-Cohen, 2004; Kim
and Tadokoro, 2007; Park et al., 2008; Schneider, 2015).

B. A variational formulation of electrostatics

In this section, we outline an energetic formulation of the
classical theory of electrostatics. This formulation is convenient
for including additional physics such as bulk and surface
elasticity, magnetism, and dissipative phenomena and naturally
fits into the framework of continuum thermodynamics. In
particular, the equilibrium states are determined by the principle
of minimum free energy in isothermal processes, and non-
equilibrium processes are dictated by the dissipation potential.
Notation.—Direct notation is employed for brevity and for

transparency of physical interpretation whenever possible.
Frequently, recognizing that many readers may be more
familiar with the index notation, we also present translations
in index form to illustrate details of the calculations. Tensors
and vectors are denoted by bold symbols e, E, m, etc., while
scalars are denoted by ξ, ζ, etc. When the index notation is in
use, the convention of summation over a repeated index is
followed. The inner (or dot) product between matrices A and
B of the same size m × n is defined as A ·B ≔ TrðATBÞ ¼
ðAÞijðBÞij, the norm jAj ¼ ðA ·AÞ1=2, and the tensor product
A ⊗ B is the tensor such that, for any C ∈ Rm×n,
ðA ⊗ BÞC ¼ ðB ·CÞA. For a vector field v, in index form
the gradient operator ∇v is equivalent to ðvÞi;j with i (j) the
first (second) index. We denote by∇,∇·, and∇× the gradient,
divergence, and curl of a field with respect to the spatial
variables y in the current configuration.
We begin with a polarizable body occupying a domain

Ω ⊂ R3 with boundary ∂Ω as illustrated in Fig. 3(b). The
body is in an ambient medium V with boundaries ∂V. For the
moment we neglect deformation and assume that the thermo-
dynamic state of the body is described by the polarization p.
Denote by e the electric field and by d ¼ ϵ0eþ p the electric
displacement. Using Maxwell’s equations and in the absence
of free charges, these fields satisfy6

∇ × e ¼ 0; ∇ · d ¼ 0 on V: ð1Þ
4There is a subtle difference between the physical origins of the

Maxwell stress effect and electrostriction. For further discussions on
this topic, see Tian (2008), Zhao and Suo (2008), and Tian et al.
(2012).

5Noncentrosymmetry is referred to as the lack of inversion
symmetry in crystal structures. Consider an “arrow” originating at
the geometric centroid of a crystal unit cell. In centrosymmetric
crystals, the arrow will see an identical environment if it undergoes a
mirror reflection.

6Since we later discuss deformations, for clarity we use lowercase
letters e;d;p;h;b;m, etc., to represent electromagnetic quantities in
the current configuration, whereas the corresponding quantities in the
reference configuration are represented by uppercase letters such as
E;D;P;H;B; and M.
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From Eq. (1), we see that there is a scalar field ξ, i.e., the
electric potential, such that e ¼ −∇ξ.
We necessarily specify the boundary conditions on ∂V

to determine the electric field. For example, let ΓD and ΓN
be a partition of the boundary ∂V (i.e., ΓD ∩ ΓN ¼ ∅,
ΓN ∪ ΓD ¼ ∂V), let ξb be the prescribed boundary potential,
let n be the unit outward normal on ∂V, and assume that

ξ ¼ ξb on ΓD;

n · d ¼ 0 on ΓN:
ð2Þ

Equations (1) and (2) can then be rewritten as the following
boundary value problem for potential ξ:

∇ · ð−ϵ0∇ξþ pχΩÞ ¼ 0 in V;

ξ ¼ ξb on ΓD; n · d ¼ 0 onΓN ;
ð3Þ

where χΩ ¼ 1 on Ω, 0 otherwise. Further, if the dielectric
property of the body Ω is specified (ϵ is the permittivity of the
body),

p ¼ ðϵ − ϵ0Þe; ð4Þ

upon inserting Eq. (4) into Eq. (3), we can uniquely determine
the spatial electric field −∇ξ.
An alternative way to formulate electrostatic theory for a

continuum body is to consider the energy of the system. For
the applied boundary conditions (2), we identify the total free
energy of the system as a functional of polarization p:

F ½p� ¼ Eelect½p� þ U½p� þWext½p�; ð5Þ

where the Maxwell equation (3) is enforced to determine ξ (as
a nonlocal functional of p) and

Eelect½p� ¼ ϵ0
2

Z
V
j∇ξj2;

U½p� ¼
Z
Ω
ψðpÞ;

Wext½p� ¼
Z
ΓD

ξbn · d: ð6Þ

Physically, the term Eelect½p� is the energy associated with
the electric field on V, U½p� is the energy of the polarizable

body Ω with ψðpÞ being the free-energy density, and Wext½p�
is the energy associated with the boundary devices for
maintaining the boundary conditions (2). From thermody-
namics, we claim that the equilibrium polarization of the body
is determined by the principle of minimum free energy:

minfF ½p�∶ all admissible polarization pg: ð7Þ

The variational principle (7) implies that the first variation of
F ½p� must vanish for all admissible perturbation p1:

δF ½p� ≔ dF ½pþ εp1�
dε

����
ε¼0

¼ 0: ð8Þ

Using a calculus of the variations, we find that Eq. (8) implies
that (Liu, 2013b)

∂ψ
∂p þ ∇ξ ¼ 0 inΩ ð9Þ

as the Euler-Lagrange equation, which can also be regarded as
the constitutive relation between the local electric field and
polarization.
Electrostatic theories for a variety of materials can be

variationally formulated as previously described by choosing
appropriate forms of the free-energy density function ψðpÞ,
including linear and nonlinear dielectrics and ferroelectric
materials. For instance, to model linear dielectric materials we
consider the free-energy density function (ϵ ¼ ϵ0ϵr)

ψðpÞ ¼ 1
2
ajpj2; a ¼ 1

ϵ0ðϵr − 1Þ : ð10Þ

Using Eqs. (5) and (6), we write the total free energy of the
system as

F ½p� ¼
Z
Ω

�
1

2
ajpj2 þ ϵ0

2
j∇ξj2

�
þ
Z
ΓD

ξbn · ð−ϵ0∇ξþ pÞ:

ð11Þ

The variational principle (7) then implies Eq. (9) as a
necessary condition, which is equivalent to the constitutive
relation (4).
Compared to the conventional formulation based on the field

equations and constitutive laws, the advantage of a variational
formulation (7) includes the fact that new material models that
account for general couplings can be incorporated into the
framework by directly postulating the new free-energy density
function ψ ¼ ψ (state variables). Moreover, constraints implied
by the thermodynamics laws, frame indifference, and material
symmetries can be conveniently enforced by restricting the
form of the free-energy density function ψ .
There are alternative choices of the state variables and

energy functionals for continuum electroelasticity in the
literature that were reviewed by Liu (2014b) and references
therein. Here we proceed with the polarization p–based
formulation since polarization is defined only on the body
Ω (trivial in VnΩ) and the resulting variational problem is a
minimization problem for the total free energy. Having a

(a) (b)

FIG. 3. Schematic of the electroelastic system with the pertinent
boundary conditions in both reference and current configurations.
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minimum energy principle can facilitate stability analysis,
which is one of the advantages of the p-based formulation.

C. Coupling of electrostatics with elasticity
and the Maxwell stress

In this section, we consider the coupling between electro-
statics and elasticity. To this end, we introduce an additional
state variable, namely, the deformation. Let ΩR (Ω) be the
“reference configuration” before the deformation (“current
configuration”) of the body. VR is similarly defined as the
reference domain of the current domain V; see Fig. 3. A
material point in reference (current) configuration is denoted
by the Lagrangian coordinate x ∈ ΩR (Eulerian coordinates
y ∈ Ω). The transformation y ¼ yðxÞ from the reference
configuration to the current configuration is referred to as
the deformation y∶ΩR → Ω. In addition, the displacement
u∶ΩR → R3 is defined as7

uðxÞ ¼ yðxÞ − x: ð12Þ

For clarity, we denote by∇,∇·, and∇× (∇x,∇x·, and∇x×)
as the gradient, divergence, and curl of a field with respect to
the spatial variables y in the current configuration (the material
point variables x in the reference configuration). We denote by

F ¼ ∇xy; G ¼ ∇x∇xy ¼ ∇x∇xu; J ¼ detF ð13Þ

the deformation gradient, strain gradient, and Jacobian,
respectively.8 Since material points cannot interpenetrate,
we require J > 0 everywhere.
In the presence of deformation, familiar field equations and

physical quantities are usually defined on the current con-
figuration with y being the spatial variables. On the other
hand, the definition of strain must involve the reference
coordinates x, and variational calculations are much easier
with functionals expressed as integrals over the reference
configuration. Therefore, we frequently have to transform
quantities between the reference configuration and the current
configuration. Although they are standard in classical con-
tinuum thermodynamics, we now give an overview of some of
the important transformations.
Let ξ, v, and T be a scalar field, a vector field, and a tensor

field, respectively. Here and subsequently, we adopt the
convention ð∇xvÞij ¼ ∂vi=∂xj ¼ vi;xj for the vector field
v ¼ ðviÞ and ð∇x · TÞp ¼ ∂Tpk=∂xk ¼ Tpk;xk for the tensor
field T ¼ ðTpiÞ. Upon a change of variables y → x and
following the chain rule, we find that the gradients are
related by

ξ;xi ¼ ξ;ykyk;xi i:e:; ∇xξ ¼ FT∇ξ;
vi;xj ¼ vi;ykyk;xj i:e:; ∇xv ¼ ð∇vÞF: ð14Þ

In addition, for the Jacobian J ¼ detF and cofactor matrix
cofF ¼ JF−T we recall the identities

J;xi ¼ JðF−1ÞklðFÞlk;xi ; ½JðF−1Þki�;xk ¼ ðcofFÞik;xk ¼ 0:

Therefore,

∇ · v ¼ vi;yi ¼ vi;xkðF−1Þki ¼
1

J
½JðF−1Þkivi�xk

¼ 1

J
∇x · ðJF−1vÞ: ð15Þ

Similarly,

Tpi;yi ¼ Tpi;xkðF−1Þki ¼
1

J
½JðF−1ÞkiTpi�xk ; i:e:;

∇ · T ¼ 1

J
∇x · ðJTF−TÞ: ð16Þ

In integral form we have, for any material volume element
PR ⊂ ΩR in the reference configuration and P ¼ yðPRÞ in the
current configuration,

Z
P
∇ · vdy ¼

Z
PR

∇x · ðJF−1vÞdx;
Z
P
∇ · Tdy ¼

Z
PR

∇x · ðJTF−TÞdx: ð17Þ

Next we proceed to the precise definition of our thermo-
dynamic system. For simplicity, we assume the following
mechanical boundary conditions, which specify the mechani-
cal interaction of the body with external forces (i.e., loading
devices):

y ¼ yb on SRD;

surface traction ¼ tb on SRN;
ð18Þ

where SRD; S
R
N is a subdivision of the boundary ∂ΩR, tb∶SRN →

R3 is the surface traction or the applied force density per unit
area in the reference configuration that is independent of the
deformation y, and yb∶SRD → R3 prescribes the positions of
boundary SRD. Further, the electrostatic boundary conditions (2)
are applied on the reference configuration:

ξ ¼ ξb onΓR
D;

surface charge density ¼ 0 onΓR
N;

ð19Þ

where the boundary potential ξb∶ΓR
D → R is independent of

the deformation y.
As claimed in Sec. II.B, general electroelasticity models can

be obtained by postulating reasonable forms of free-energy
density functions ψ of the body. For general nonlinear
electroelastic models that account for piezoelectricity and/or
flexoelectricity, we can assume that the free energy contrib-
uted by the body is given by

U½y; P̃� ¼
Z
ΩR

ψð∇xy;∇x∇xy; P̃Þ; ð20Þ

7The displacement field in Eq. (12) can be written in index
notation as ui ¼ yi − xi.

8The defined conventions in index notation are Fij ¼ yi;j,
Gijk ¼ yi;jk ¼ ui;jk, and J ¼ detðFijÞ.
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where P̃ðxÞ ¼ JðxÞp(yðxÞ) is the polarization per unit
volume in the reference configuration and ψ∶R3×3 ×
R3×3×3 ×R3 → R is the free-energy density of the material
body that is specified later. As in Eq. (5), the total free energy
of the system F ½y; P̃� can then be written as

F ½y; P̃� ¼ U½y; P̃� þ Eelect½y; P̃� þWext½y; P̃�

¼
Z
ΩR

ψð∇xy;∇x∇xy; P̃Þdxþ
Z
V

ϵ0
2
j∇ξj2dy

þ
Z
ΓD

ξbn · ddy −
Z
SRN

tb · yðxÞdx; ð21Þ

where the last term is the potential energy of the external
mechanical loading device associated with the boundary
condition (18) and, as in Sec. II.B, the electric potential ξ
is determined by Eq. (3) or, equivalently, by the reference
configuration [see Eqs. (14) and (15)]

∇x · D̃¼0; D̃¼F−1ð−ϵ0JF−T∇xξþ P̃Þ onVR;

ξ¼ ξb onΓR
D; D̃ ·N¼0 onΓR

N:
ð22Þ

In Eq. (22) N is the unit outward surface normal in the
reference configuration.
A subtlety of electrostatics for a deformable body arises

from the fact that the electric energy contributed by the field
Eelect and external devices Wext depend on the deformation y
regardless of the material properties of the body. This is
more evident upon rewriting the total free energy of the
system (21) on the reference configuration via a change of
variables y → x as

F ½y; P̃� ¼
Z
ΩR

ψð∇xy;∇x∇xy; P̃Þdxþ ϵ0
2

Z
VR

JjF−T∇xξj2dx

þ
Z
ΓR
D

ξbN · D̃dx −
Z
SRN

tb · ydx: ð23Þ

The principle of minimum free energy then implies that the
equilibrium state is determined by the variational principle

minfF ½y; P̃� in Eq. ð23Þ∶all admissible y and P̃g: ð24Þ

By the calculus of variations, we arrive at the following Euler-
Lagrange equations for the equilibrium state (Liu, 2014b):

∇x ·
�∂ψ
∂F −∇x ·

∂ψ
∂G þ Σ̃0

MW

�
¼ 0 onΩR;

∂ψ
∂P̃ − E ¼ 0 onΩR;

ð25Þ

where E ¼ −F−T∇xξ ¼ −∇ξ is the electric field in
Lagrangian coordinates x and

Σ̃0
MW ¼ E ⊗ D̃ −

ϵ0
2
JjEj2F−T ð26Þ

is the nominal Maxwell stress.
A few remarks are in order here regarding the Euler-

Lagrange equations (25) and the Maxwell stress. First, the

electric and elastic properties of the material are
entirely determined by the free-energy density function
ψ ¼ ψðF;G; P̃Þ. In particular, from Eq. (25) we can identify
∂ψ=∂F (∂ψ=∂G) as the Piola-Kirchhoff stress (moment
stress) in the classical nonlinear elasticity, whereas Eq. (25)
prescribes how the polarization and electrical field are related
inside the medium. Second, the extra term, i.e., the nominal
Maxwell stress Σ̃0

MW, in the mechanical balance equation (25)
precisely arises from the dependence of electric energies on
the deformation y. In the current configuration, using Eq. (16)
the nominal Maxwell stress (26) is transformed into (I ∈ R3×3

is the identity matrix)9

σ0MW ¼ 1

J
Σ̃0
MWF

T ¼ e ⊗ d −
ϵ0
2
jej2I; ð27Þ

which admits the usual physical interpretation of Cauchy
stress in the current configuration; σ0MWn represents the
traction on an interface with unit outward normal n.
The interpretation and implications of the Maxwell

stress (27) can be seen from a more intuitive perspective. If
a body in the current configuration admits smooth distribu-
tions of the charges (ρ) and dipoles (p) and hence the local
electric field e ¼ −∇ξ and gradient of the electric field ∇e
are well defined everywhere by a solution to the Maxwell
equation (3), then from the fundamental physics the electric
force on these charges and dipoles can be expressed as

fe ¼ ρeþ ð∇eÞp: ð28Þ

Indeed, by direct calculation we can verify that

∇ · ðσ0MWÞ ¼ fe; ð29Þ

which is consistent with the mechanical balance equation (25).
The direct implementation of Eq. (28) to account for mechani-
cal effects of electrostatics, however, suffers from the disconti-
nuity or unboundedness of the electric field at the defects, such
as point charges or interfaces between two media.
In general, not all mechanical effects contributed by

electrostatic interactions are reflected by the particular form
of Maxwell stress (27). There are additional stress terms that
depend on polarization due to the coupling between the
deformation gradient and the polarization in the free-energy
density ψ ¼ ψðF;G; P̃Þ. Even for the minimum model of
electroelastic materials, i.e., ideal dielectrics where there is no
direct coupling between strain and polarization and the
permittivity of the medium is a deformation-independent
constant ϵ, it can be shown that the free-energy density must
be of the following form (Liu, 2014b):

ψðF; P̃Þ ¼ ψelastðFÞ þ jP̃j2
2Jðϵ − ϵ0Þ

: ð30Þ

The stress term ∂ψ=∂F in Eq. (25) can then be written as

9The Maxwell stress in Eq. (27) can be written in index notation as
ðσ0MWÞij ¼ ð1=JÞðΣ0

MWÞikFjk ¼ eidj − ðϵ0=2Þekekδij.
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∂ψ
∂F ¼ ∂ψelast

∂F þ ∂
∂F

� jP̃j2
2Jðϵ − ϵ0Þ

�

¼ ∂ψelast

∂F −
jP̃j2

2Jðϵ − ϵ0Þ
F−T:

It is more enlightening to identify the first term of this
equation as the “mechanical stress.” Meanwhile, combining
the last term with the Maxwell stress in Eq. (25), we obtain

Σ̃MW ¼ E ⊗ D̃ −
�
ϵ0
2
JjEj2 þ jP̃j2

2Jðϵ − ϵ0Þ
�
F−T

¼ E ⊗ D̃ −
ϵ

2
JjEj2F−T; ð31Þ

or equivalently in the current configuration,

σMW ¼ 1

J
Σ̃MWFT ¼ e ⊗ d −

ϵ

2
jej2I; ð32Þ

where the last equality in Eq. (31) follows from the application
of Eqs. (25) and (30): E ¼ P̃=Jðϵ − ϵ0Þ. The quantities Σ̃MW
and σMW are also referred to as the modified Maxwell stress in
the literature.
Within each homogeneous phase of ideal dielectrics, by

direct calculations we see that

∇ · ðσMWÞ ¼ ∇x · ðΣMWÞ ¼ 0: ð33Þ

Moreover, by the divergence theorem we have, for any
nonhomogeneous sub-body B ⊂ V in the current configuration,

Z
B
∇ · σMWdv ¼

Z
∂B

σMWnds;

where n is the outward unit normal on ∂B. Therefore, the
mechanical force on the sub-body B with the boundary ∂B due
to the Maxwell stress σMW can sometimes be replaced by a
surface traction

te ¼ σMWn on ∂B: ð34Þ

In practice, the minimum model of ideal dielectrics often
suffices for most applications. Further, it is desirable not to
repeat the lengthy variational calculations to extract the
mechanical effect of electric interactions. Instead, we may
directly extend the concept of Maxwell stress in Eqs. (31)–(33)
and the surface traction interpretation in Eq. (34) to more
general settings, including ac fields, fluids, and mediums with
effects of electric screening. From this viewpoint, we take the
Maxwell stress in Eqs. (31)–(33) and the surface traction
formula (34) as the applied “electric forces” to a deformable
body without resorting to the energetic interpretation discussed
in this section.

D. Piezoelectricity and flexoelectricity

Most biological materials are approximately ideal
dielectrics, meaning that the permittivity of the medium is
a constant independent of the polarization and deformation.

Nevertheless, some biological materials may exhibit piezoelec-
tricity and all biological materials are flexoelectric (Petrov,
2002). Piezoelectricity is a direct coupling between the strain
and polarization. In the current framework, a minimum model
of piezoelectricity can be obtained by postulating a free-energy
density function of the following form:

ψðF; P̃Þ ¼ ψ elastðFÞ þ ðRTP̃Þ · BðFTF − IÞ

þ ðRTP̃Þ · AðRTP̃Þ
2J

; ð35Þ

where, to recover the usual linear Hookean elasticity,
we assume that (C ∈ R3×3×3×3 is the fourth-order elasticity
tensor)10

ψ elastðFÞ ¼ 1
8
ðFTF − IÞ · CðFTF − IÞ:

The rigid rotation matrix R is such that F ¼ RU and
U ¼ ðFTFÞ1=2 in the polar decomposition of nonsingular F.
The expression FTF, i.e., the Cauchy-Green tensor, arises from
the principle of frame indifference.
As a comparison to the model of ideal dielectrics (30), an

additional coupling term between strain and polarization
was introduced in Eq. (35). Moreover, the fourth-order
elasticity tensor C ∈ R3×3×3×3, the third-order piezoelectricity
tensor B ∈ R3×3×3, and the second-order susceptibility tensor
A ∈ R3×3 are all material constants and are assumed to be
independent of deformation and polarization. Inserting
Eq. (35) into the general Euler-Lagrange equations (25),
we immediately obtain the governing equations for the
minimum model of piezoelectricity. For a simplified linear
theory, we assume small strain and polarization (jF − Ij ¼
j∇uj ∼ jP̃j ∼ ε ≪ 1), keep only the leading-order terms, and
arrive at the following boundary value problem (Liu, 2014b):

∇ · ðC∇uþ BTpÞ ¼ 0 in Ω;
∇ξþ B∇uþ Ap ¼ 0 in Ω;
∇ · ð−ϵ0∇ξþ pÞ ¼ 0 in V;

with the boundary conditions

ξ ¼ ξb on ΓD; d · n ¼ 0 on ΓN;

u ¼ ub on SD; ðC∇uþ BTpÞn ¼ 0 on SN:
ð36Þ

In Eq. (36) we no longer differentiate between the reference
and current configurations for small strains.
As previously discussed, most biological materials are

unlikely to possess the lower symmetry required to be
piezoelectric. Because of the centrosymmetry, piezoelectricity
is then absent because the coupling tensor B is of third order
and has to vanish for centrosymmetric materials. Therefore,
the leading direct coupling between deformation and polari-
zation for centrosymmetric materials would be the coupling

10The elastic part of the energy density function in Eq. (35) can be
written in index notation as ψ elastðFijÞ ¼ ð1=2ÞðFmiFmj − δijÞ×
CijklðFnkFnl − δklÞ.
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between the strain gradient ∇∇y ¼ ∇∇u and the polarization
P̃. In parallel to Eq. (35), a minimum model of isotropic
flexoelectricity can be obtained by postulating a free-energy
density function of the following form:

ψð∇y;∇∇y; P̃Þ ¼ ψ elastð∇yÞ þ g
2
jΔyj2

þ fP̃ · Δy þ jP̃j2
2Jðϵ − ϵ0Þ

; ð37Þ

where f is the flexoelectric coupling constant,Δð·Þ ¼ ∇ · ∇ð·Þ
denotes the Laplace operator with respect to the Lagrangian
coordinates, and the term ðg=2ÞjΔyj2, with g > 0, is required
for stability. Inserting Eq. (37) into the general Euler-Lagrange
equations (25), we obtain the governing equations for
the minimum model of flexoelectricity. For a simplified
linear theory, we assume small strain and polarization
(jF − Ij ¼ j∇uj ∼ jP̃j ∼ ε ≪ 1), keep only the leading-order
terms, and arrive at the following boundary value problem
(Liu, 2014b)11 :

−∇ · ðC∇uÞ þ ΔðgΔuþ fpÞ ¼ 0 in Ω;
∇ξþ fΔuþ 1=ðϵ − ϵ0Þp ¼ 0 in Ω;
∇ · ð−ϵ0∇ξþ pÞ ¼ 0 in V;

ð38Þ

with, in addition to the first three conditions in Eq. (36), the
boundary conditions

ðC∇uÞn − ½∇ðgΔuþ fpÞ�n − tb ¼ 0 on SN;

gΔuþ fP ¼ 0 on ∂Ω: ð39Þ

As before, we do not differentiate between the reference and
current configurations for small strains in the previously
mentioned boundary value problem for flexoelectricity. We
note that flexoelectric coupling is size dependent and could be
significant in thin nanosize structures. One of the examples
where flexoelectricity is considerable is in biological mem-
branes (discussed in Sec. II.E [Eq. (56)]).

E. Electroelasticity for biological membranes

Biological membranes are thin structures formed by lipid
molecules with embedded proteins. These membranes are
often referred to as fluidic membranes since, within the plane
of the membrane, the lipid molecules can flow and are unable
to sustain any static shear stress. Mechanically, fluidic
membranes can be modeled as isotropic elastic shells that
can resist bending and stretching (Phillips et al., 2012).
Electrically, fluidic membranes can be modeled as mediums
that are both polarizable and conductive. We now describe
how the electroelasticity theory in three dimensions described
in Sec. II.D translates into electric and mechanical models for
fluidic membranes.

For simplicity, we assume linear responses for ambient
media surrounding a biological cell. That is, the electric
displacement is given by

d ¼ ϵðiÞe;

where i ¼ ext (int) orm represents the medium on the exterior
(interior) side of the unit vector n or the membrane itself and

ϵðiÞ ¼ ϵðiÞd þ σðiÞ

iω
:

Here ϵðiÞd is the dielectric constant, σðiÞ is the conductivity, and
ω is the ac frequency.
We now specify the boundary value problem for determin-

ing the electric field in space and the associated Maxwell
stress, which is pivotal for understanding the electromechani-
cal coupling of cells. In the absence of external charges, the
Maxwell equation implies that

∇ · d ¼ ∇ · ½−ϵðxÞ∇ξ� ¼ 0 in R3;

−∇ξ → ee as jxj → þ∞;
ð40Þ

where the complex dielectric coefficient ϵðxÞ takes the value
of ϵðiÞ in the i phase and ee is the external electric field far from
the membrane.
It is sometimes convenient to simplify the three-phase

model (40) using a two-phase model. In this model, the
membrane is assumed to be simply a surface with zero
thickness; the electrical effects of the membrane are then
accounted for using the following jump conditions:

⟦d⟧ · n ¼ 0 on S;

n · dþ k⟦ξ⟧ ¼ p� · n on S;
ð41Þ

where the complex constant k can be interpreted as the
capacitance of the membrane per unit area and ⟦ξ⟧ is
recognized as the transmembrane potential. If the membrane

is actually of thickness t with dielectric constant ϵðmÞ
d and

conductivity σðmÞ,

k ¼ 1

t

�
ϵðmÞ
d þ σðmÞ

iω

�
:

In addition, the quantity p� in Eq. (41) could be interpreted as
the additional polarization that is not accounted for by the
dielectric constant, such as the polarization due to piezoelec-
tricity or flexoelectricity. In other words, the actual polariza-
tion on the membrane is given by

p ¼ p� − ðϵðmÞ
d − ϵ0Þ⟦ξ⟧n=t: ð42Þ

Unlike solid materials, fluidic membranes admit an addi-
tional symmetry: the elastic energy of the membrane depends
only on the current configuration, typically the mean and
Gaussian curvature of the membrane. To describe the elec-
troelastic states of the membrane shown in Fig. 4, we
introduce a parametrization (or coordinate patch) y∶U → S,
where U ⊂ R2 is a fixed set for parametrization. We denote by
ðx1; x2Þ the coordinates of points in U with respect to an

11The index notation for Eq. (38) is given by −ðCijkluk;lÞ;jþ
ðgui;jj þ fpiÞ;kk ¼ 0 inΩ, ξ;i þ fui;jj þ 1=ðϵ − ϵ0Þpi ¼ 0 inΩ, and
ð−ϵ0ξ;i þ piÞ;i ¼ 0 in V.
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orthonormal basis, by gαβ ¼ yα · yβ
12 the metric tensor (first

fundamental form), by G ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgαβÞ

p
the surface Jacobian,

and by

n ¼ y;1 × y;2
jy;1 × y;2j

the unit normal vector. In addition, the second fundamental
form is defined as Kαβ ¼ n · y;αβ. Further, at a point on the
surface let T n be the tangential plane, let Pn ¼ I − n ⊗ n be
the projection13 from R3 into T n, and let ∇sð·Þ ¼ ∇xð·ÞPn
(∇s · ð·Þ ¼ Tr½Pn∇xð·ÞPn�) be the surface gradient (diver-
gence) operator (Mozaffari, Yang, and Sharma, 2020). We
denote by L∶T n → T n and

L ¼ −∇sn ð43Þ

the Weingarten map,14 and by

H ¼ 1
2
TrL; K ¼ detL ð44Þ

the mean curvature and Gaussian curvature, respectively.15

For a fluidic membrane parametrized by y ¼ yðx1; x2Þ
under the application of an electric field and mechanical
surface forces tb∶S → R3, the free energy of the membrane
can be defined as

F ½y� ¼ U½y� þWext½y�; ð45Þ

where the elastic energy of the membrane is postulated as

U½y� ¼
Z
S
ψðH;K;pÞda

and the potential energy due to the electric field and
mechanical loading devices is given by

Wext½y� ¼ −
Z
S
ðtb þ teÞ · yda:

Here, for brevity, we directly account for the mechanical effect
of the electric field on the membrane using a surface traction

te ¼ ⟦σMW⟧n≡ ½σMWjþ − σMWj−�n. ð46Þ

In addition to the membrane elastic energy, two physical
constraints are frequently imposed on the admissible con-
figurations y in the variational principle (49).
(C1) Local area conservation.—The membrane, though

deformable, has to conserve the area of each surface
element; i.e., the surface Jacobian G ¼ Gðx1; x2Þ is
independent of variations of y. This constraint
can be accounted for by considering a Lagrange
multiplier term

L1½y� ¼
Z
S
λda; ð47Þ

where λ can be interpreted as the local surface
tension (it is not constant on the entire surface).

(C2) Enclosed volume conservation.—If S ¼ ∂Ω is a
close surface without an edge, the enclosed vol-
ume is typically assumed to be constant. This
constraint can be addressed by considering a
Lagrange multiplier term

L2½y� ¼ p
Z
Ω
dv: ð48Þ

The equilibrium configuration is determined by the prin-
ciple of minimum free energy as follows:

minfF ½y� in Eq. ð45Þ∶ all admissible yg: ð49Þ

To derive the Euler-Lagrange equation associated with the
previously mentioned variational principle, we consider var-
iations of the surface y → yε ¼ y þ εv and rewrite the surface
integral in terms of the “reference” coordinates ðx1; x2Þ as

FIG. 4. Schematic of a closed lipid vesicle with midsurface S.

12The yα ¼ ∂y=∂xα are the tangent vectors in the deformed
(covariant) space (Deserno, 2015). Further, gαβ are the covariant
components of the first fundamental form.

13The projection tensor in index notation is ðPnÞij ¼ δij − ninj.
14The Weingarten relation can be shown as n;α ¼ −Kβ

αeβ, where
Kβ

α ¼ Kαγgγβ and ðgαβÞ ¼ ðgαβÞ−1.
15The mean and Gaussian curvatures can be written as H ¼

ð1=2ÞgαβKαβ andK ¼ ð1=2G2ÞεαβελγKαλKβγ , where εαβ is the permu-
tation tensor, i.e., ε12¼−ε21¼1 and ε11 ¼ ε22 ¼ 0. As an example,
assume a spherical surface of radiusRwith the position vector y ¼ Rer
and the outward unit normaln ¼ er. The projection tensor is obtainedas
Pn ¼ eθ ⊗ eθ þ eϕ ⊗ eϕ, and from Eq. (43) the Weingarten map is
L ¼ −∇sn ¼ −ð1=RÞðeθ ⊗ eθ þ eϕ ⊗ eϕÞ (Mozaffari, Yang, and
Sharma, 2020). Therefore, the mean and Gaussian curvatures are
obtained from Eq. (44) as H ¼ −1=R and K ¼ 1=R2.
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Z
S
ð·Þda ¼

Z
U
ð·ÞGdA:

Associated with the varied surface ∂Ωε, to the first order the
unit normal vector nε, the mean curvature Hε, the Gaussian
curvature Kε, and the surface Jacobian Gε can be written as
[see Biria, Maleki, and Fried (2013) for details]16

nε ¼ n − εð∇svÞTnþ oðεÞ;
Hε ¼ H þ ε½ð2H2 − KÞvn þ 1

2
Δsvn þ ∇sH · vt� þ oðεÞ;

Kε ¼ K þ ε½2HðKvn þ ΔsvnÞ −∇s · ðL∇svn − 2vn∇sHÞ
− 2vnΔsH þ ∇sK · vt� þ oðεÞ;

Gε ¼ G½1þ εð−2Hvn þ∇s · vtÞ� þ oðεÞ; ð50Þ

where vn (vt) is the normal (tangential) components of vector
field v and is given by

vn ¼ v · n ðvt ¼ v − vnn ¼ PnvÞ:

Using the standard calculus of variations, we can now derive
the associated Euler-Lagrange equations for the equilibrium
configuration of the membrane y ¼ yðx1; x2Þ subject to the
previously mentioned constraints (C1) and (C2). If the mem-
brane is differentiable without an edge, we find the following
governing equation for the equilibrium configuration:

ψHð2H2 − KÞ þ 1
2
ΔsψH þ 2ψKHK þ 2ΔsðψKHÞ

−∇s · ðL∇sψKÞ − 2ð∇sHÞ · ð∇sψKÞ
−2ψKΔsH − 2Hðψ þ λÞ − ðte þ tbÞ · n ¼ p;

∇sλþ Pnðte þ tbÞ ¼ 0;

ð51Þ

where ψH ¼ ∂ψ=∂H, ψK ¼ ∂ψ=∂K, and the first (second)
equation corresponds to the balance of the total normal
(tangential) force on any surface element. Moreover, in regard
to Eq. (9) we postulate the constitutive relation

n ·
∂ψ
∂p þ ⟦ξ⟧ ¼ 0 on ∂Ω; ð52Þ

which, together with the mechanical equilibrium equation (51)
and theMaxwell equations (40) and (41), forms a closed system
that dictates the electroelastic behaviors of the membrane. For a
systematic discussion of both the mechanical and electro-
mechanical theory of membranes and a good review of the
relevant literature, see Steigmann (1999), Biria, Maleki, and
Fried (2013), and Deserno (2015).
To see the implication of this framework, we now specify

the free-energy density function of the membrane. For a
dielectric Helfrich-Canham membrane with a preferred mean
curvature H� (Helfrich, 1973b), we postulate that

ψ ¼ ψHCðH;K;pÞ
¼ 1

2
κbðH −H�Þ2 þ κgK þ 1

2
ajpj2 þ λ�; ð53Þ

where κb and κg are the bending moduli associated with
the mean and Gaussian curvatures, respectively, a ¼
t=ðϵðmÞ − ϵ0Þ, and λ� is the reference constant surface tension.
Equation (51) can then be written as

κbðH −H�Þð2H2 − KÞ þ ðκb=2ÞΔsH

−2Hðψ − κgK þ λÞ − ðte þ tbÞ · n ¼ p;

∇sλþ Pnðte þ tbÞ ¼ 0;

ð54Þ

and Eqs. (41), (42), and (52) imply the following interfacial
conditions for the Maxwell equation (40):

⟦d⟧ · n ¼ 0 on S;

n · dþ k⟦ξ⟧ ¼ 0 on S:
ð55Þ

The electroelastic membrane theory represented by Eqs. (40)
and (41) and Eqs. (51) and (52) is geometrically nonlinear and
coupled since the local electric field and Maxwell stress
depend on the unknown surface configuration ∂Ω. For a
flexoelectric Helfrich-Canham membrane we assume that

ψ ¼ ψHCðH;K;pÞ þ fHp · n; ð56Þ

where f is the flexoelectric constant. Upon repeating the
variational calculation, we obtain the following mechanical
equilibrium equations:

κbðH −H�Þð2H2 − KÞ−Kfp · nþ ðκb=2ÞΔsH

þ1
2
fΔsðp · nÞ − 2Hðψ−κgK − fHp · nþ λÞ

þf∇s · ðHpÞ − ðte þ tbÞ · n ¼ p;

∇sλþ fHLpþ Pnðte þ tbÞ ¼ 0;

ð57Þ

and Eqs. (41), (42), and (52) imply the following interfacial
conditions for the Maxwell equation (40):

⟦d⟧ · n ¼ 0 on S;

n · dþ k⟦ξ⟧ ¼ fH on S:
ð58Þ

Moreover, adopting the so-called Monge representation for
surfaces, we can express the out-of-plane deformation in the
membrane using a height function hðxÞ, where x ¼ ðx1; x2Þ is
the position vector in the flat reference configuration.17

Therefore, the position of the membrane in a deformed state
can be expressed in the form of (x1; x2; hðxÞ). The mean and
Gaussian curvatures and the normal vector in Monge’s gauge
can be obtained as follows (Deserno, 2015)18:16Alternatively, the surface gradient, surface divergence, and

surface Laplacian can be expressed as ð∇sfÞα ¼ gαβð∂f=∂xβÞ,
∇s · a ¼ ð1=GÞð∂=∂xαÞðGaαÞ, and Δsf ¼ ð1=GÞð∂=∂xαÞ×
½Ggαβð∂f=∂xβÞ�, where f and a are the arbitrary scalar and contra-
variant vector in the reference coordinates.

17This representation is valid only for surfaces without overhangs.
18Here we are working in two-dimensional space and ∇ ¼

½∂=∂x1; ∂=∂x2�;Δ ¼ ½∂2=∂x21; ∂2=∂x22�.
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H ¼ ∇ ·

� ∇hðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇hðxÞj2p

�
; K ¼ det½∇∇hðxÞ�

½1þ j∇hðxÞj2�2 ;

n ¼ ( −∇hðxÞ; 1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇hðxÞj2

p ; Jh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇hðxÞj2

q
: ð59Þ

Upon linearization, by assuming that the deviation from the
flat reference is small, i.e., j∇h ≪ 1j, one can further simplify
the mean and Gaussian curvatures in Eq. (59) as

H ≃ h11 þ h22;

K ≃ 1
2
½ðΔhÞ2 − j∇∇hj2� ¼ h11h22 − ðh12Þ2 ≃ 0: ð60Þ

By imposing the linearized definitions of mean and
Gaussian curvature in Eq. (60) and ignoring the spontaneous
curvature, mechanical loadings, the surface, and the electro-
static effects, the equilibrium equations (57) can be further
simplified as

κb
2
ΔðΔhÞ ¼ 0; ð61Þ

which is in good agreement with the familiar biharmonic
differential equation used in the literature.
In this section, we directly present the translation of the

three-dimensional theory of electroelasticity to membranes
without any proof. It is important to note, however, that the
rigorous derivation of the mathematical theory of membranes
from its three-dimensional counterpart has indeed attracted
much attention in the literature; see Friesecke, James, and
Müller (2006), Deseri, Piccioni, and Zurlo (2008), Steigmann
(2009, 2013, 2018), Edmiston and Steigmann (2011), Ogden
and Steigmann (2011), Barham, Steigmann, and White
(2012), and Roohbakhshan, Duong, and Sauer (2016). In
our presentation of the theory of membranes, we are ignoring
the tilt degrees of freedom, which under certain circumstances
are important as well and can be readily incorporated into the
framework described in this section (May, 2000; Zimmerberg
and Kozlov, 2006; Rangamani and Steigmann, 2014; Deserno,
2015; Terzi and Deserno, 2017).

III. CELL MOTION UNDER AN EXTERNAL
ELECTRIC FIELD

Manipulation of cells and vesicles, and specifically the
control of their motion, is of critical importance in the
biomedical sciences. For example, in the case of drug delivery,
a drug carrying liposome must be placed in a specific location
and prompted to release its content at a specific time (Sharma
and Sharma, 1997; Mallouk and Sen, 2009; Kagan et al.,
2010). Similarly, cells may be directed to fuse (Solovev et al.,
2010), separate, or sort (Mehmet and Daniel, 2005; Xia et al.,
2006; Chen et al., 2008). The use of electric field–based
methods for cell manipulation and separation was found to
have several advantages over conventional approaches that are
based on size and density (Sato et al., 2006) or affinity (Fu
et al., 1999). Electric field–based methods are faster and
provide a higher resolution for treating small samples using
noncontact devices. Among the different strategies to create
motion in biological particles using an electric field,

dielectrophoresis is perhaps the most significant.
Electrophoresis is also utilized but is specific to charged
biological particles and the imposed electric field can be
uniform and nonuniform. Dielectrophoresis, on the other
hand, is a universal phenomenon and can also be applied
to neutral particles, with the caveat that the imposed electric
field must be inhomogeneous. In this section, we discuss the
theory and physics of dielectrophoresis and electrorotation,
which are widely used to achieve directed motion of biologi-
cal cells.

A. Overview of dielectrophoresis and electrorotation

A neutral dielectric body polarizes when placed in an
electric field. If the imposed external electrical field is uni-
form, while the body may deform and may be in a state of
stress, the net force on the body will be zero and no motion
will ensue. However, a spatially nonuniform electric field will
induce a net force on the polarized body and create a
directional motion. This phenomenon is called dielectropho-
resis (DEP) (Pohl, 1951); see Fig. 5. When a dielectric body is
placed in a rotating electric field, a torque is exerted on its
surface that induces rotation in a process referred to as
electrorotation. The magnitude and direction of the DEP
force depend on the dielectric properties of the body, and
thus may be used to distinguish cells. Indeed, the phenomenon
of DEP was initially used to develop a method for biological
cell separation (Pohl and Hawk, 1966). Over the last few
decades, several other technologies based on DEP have been
developed for a variety of applications, including characteri-
zation of the dielectric properties of biological membranes and
cell interior (Gagnon, 2011), separation of cells of different
types and manipulation of DNA molecules (Jones, 2003),
trapping of cells between electrodes (Gray et al., 2004),
sorting of the cells using traveling wave DEP (Cheng et al.,
2009; Hughes, 2016; Karle et al., 2016), and assessment of
cell viability (Zhang et al., 2020). A large body of literature
exists on the aforementioned developments (Pethig, 2010),
which have been reviewed extensively in recent years. We
highlight the following reviews on cell manipulation, sepa-
ration and detection (Gagnon, 2011; Yang, 2012; Devi et al.,
2014), the application of DEP in stem cell research (Pethig
et al., 2010), and the diagnosis of cancer and other diseases
(Adekanmbi and Srivastava, 2016; Chan et al., 2018).
From a theoretical standpoint, the vast majority of the

literature favors an approach called effective moment method
(EMM) for computing DEP forces and torques (Jones, 1979;
Wang et al., 1994) and using the resulting insights to either
design cellular motion or interpret the results of relevant
experiments. This approach approximates the charge accu-
mulation on the surface of the polarized dielectric body by a
set of multipoles and then computes the Coulombic inter-
action of the multipoles with the external electric field. The
EMM, although a simplification, is expedient (especially if
only the lowest-order dipole contribution is retained) due to
closed-form expressions, and is especially suitable when the
dielectric body is much smaller than the electrodes. With such
an approximation, the dielectric body is then simply approxi-
mated as a sphere to calculate the DEP force and torque. Thus,
local field effects are neglected, with the electrical signature
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determined solely by the multipoles. Recent developments in
the biomedical sciences and associated technologies have
increasingly relied on microscale and nanoscale devices,
where the scale of the dielectric body is comparable to the
electrode and thus the local field on the body may significantly
affect the results (Hughes, 2000; Freer et al., 2010). Therefore,
a more rigorous approach in a multipole approximation of the
body may be required in those instances. Moreover, analytical
solutions for higher-order moments are available only for
spherically shaped bodies (Stratton, 2007; Yang and Lei,
2007). However, it has also been shown that the results of a
spherical approximation are not reliable in many cases (Nili
and Green, 2014). Higher-order multipoles instead need to be
solved using numerical methods to approximate the response
of different shapes (Green and Jones, 2007; Ogbi et al., 2012;
Nili and Green, 2014). This requirement somewhat reduces
the advantage of the EMM approach. In all these cases, the
method is still limited to an electric field that is rotationally
symmetric along the symmetry axis of the body.
An alternative approach to calculate the DEP force and torque

is based on the rigorously formulated theory (presented in
Sec. II) based on the use of the Maxwell stress tensor, which
is referred to in the literature as theMaxwell stress tensor (MST)
method (Wang, Wang, and Gascoyne, 1997). While the MST
approach is comprehensive and accurate, it may be computa-
tionally expensive and almost always requires a numerical
solution. Currently, there are several review papers that have
discussed the effective moment method (Jones, 2003; Pethig,
2010). In the following, we present a summary of the EMM and
review the key developments that have been made to apply this
method to more complex problems. We then present the MST
method based on the theory derived in Sec. II.C and discuss
scenarios where using the MST method is essential.

B. Effective moment method and its limitations
in complex problems

DEP and the electrorotation response of biological materi-
als have a strong dependence on the frequency of the

nonuniform electric field, and the conductivity of both the
ambient medium and the biological material. In the effective
moment method, the biological material is replaced by a
multipole. For example, a sphere that is exposed to a
nonuniform external electric field ee that varies over a length
scale much larger than the radius of the sphere may be
approximated with a single “point” dipole with moment ptot

(Jones, 2003). Thus, all shape information is lumped into the
three-component dipole vector ptot in this approximation. The
induced electrostatic potential of the sphere is then compared
to that of a physical dipole to derive the effective moment. The
corresponding force and torque exerted on the sphere are
then calculated by substituting this effective moment into the
following equations (Lorrain and Corson, 1970; Jones,
2003):

F ≈ ðptot ·∇Þee ð62Þ

and

T ≈ ptot × ee; ð63Þ

respectively.19 In this approximation, we have kept only the
leading-order term in the multipole expansions of the fields.
For a sphere with complex permittivity ϵðcÞ and radius R

inside an ambient liquid with permittivity ϵðlÞ, we can solve the
associated electrostatic problem [see Eqs. (3) and (4)]

∇ · ( − ϵðxÞ∇ξ) ¼ 0 in R3;

−∇ξðxÞ → ee as jxj → þ∞;
ð64Þ

where ϵðxÞ ¼ ϵðcÞ inside the sphere and is equal to ϵðlÞ

elsewhere. Upon solving the previously mentioned boundary
value problem for a uniform external electric field ee, we find
that the polarization on the sphere is uniform and given by

FIG. 5. The basic premise underpinning dielectrophoresis. (a) Polarization of a body in a uniform electric field results in a neutral body
with zero net exerted force. (b) Polarization of the body in a nonuniform electric field. Here the cell is more polarizable than the
surrounding liquid (εðcÞd > εðlÞd ) and it moves toward the region with a strong electric field [positive DEP (pDEP)]. (c) Polarization of
the body in a nonuniform electric field where the cell is less polarizable than the surrounding liquid (εðcÞd > εðlÞd ) and it moves toward the
region with a weak electric field [negative DEP (nDEP)].

19Using index notation, Fi ¼ ptot
j ∂jeei and Tk ¼ εijkptot

i eej .
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p ¼ 3ϵðlÞKee; hence, using Eq. (62), the dielectrophoretic
force is derived as (Pohl, 1958; Jones, 1995)

F ¼ 2πR3ϵðlÞK∇jeej2; ð65Þ

where

K ¼ ϵðcÞ − ϵðlÞ

ϵðcÞ þ 2ϵðlÞ
ð66Þ

is the Clausius-Mossotti factor. For K > 0, the electric
permittivity of the body is higher than the surrounding
medium and the body moves toward the region with a strong
electric field [positive DEP (pDEP)]. For K < 0, the opposite
effect takes place when the surrounding medium has a higher
electric permittivity and the body moves toward the region
with the weaker electric field [negative DEP (nDEP)]; see
Fig. 5. In practical biological applications, nDEP is preferred
since the cell is not exposed to potentially harmful strong
electric fields. Equation (65) can be used to derive other
properties in the DEP process such as the length of the chain
of particles formed. Under the right circumstances (dictated by
how closely the approximations inherent in the equations are
realized), these equations have been found to agree well with
experiments (Pohl, 1958, 1978).
Biological cells are heterogeneous structures that are made

of several organelles across different layers with differing
permittivities. Accordingly, replacing a cell with a sphere of
uniform permittivity is an oversimplification and, depending
on the context, more complex models may be needed to
simulate the electrical response of a cell. Within the EMM, a
biological cell can be modeled using a spherical shell instead
of just a solid sphere. The permittivity of the shell and cell
interior is then replaced by an “effective” permittivity using
the same approach that was used to derive the effective
moment (Jones, 1995; Sukhorukov et al., 2001). For a body
with multiple layers, the effective permittivity is calculated by
repeating this procedure for each layer (Hu, Joshi, and
Beskok, 2009). This effective permittivity can be used in
Eq. (65) to calculate the force exerted on the cell.
Experimental observations indicate the strong effect of the

frequency of the electric field and the conductivity of the
cell and its neighboring medium on their dielectrophoretic
response. Therefore, a theory based on static dielectric
constants can be inadequate. In a more realistic theory, the
effect of both conductivity and frequency should be consid-
ered. The DEP force exerted on the body is a function of the
effective dielectric constant (ε) of the body and the medium.
Further, in some applications of DEP, the dipole approxima-
tion of the body does not provide accurate results. For
instance, the megahertz range frequency of an electric field
allows generation of a negative DEP force in the solution that
can be used to trap cells singly or as aggregates (Voldman
et al., 2001; Gray et al., 2004). In this application, it is
necessary to have a high gradient electric field for the DEP
force to be significant. As a result of the high gradient, a
dipolar approximation of the body is too inaccurate (Schnelle
et al., 1999), and higher-order multipolar approximations are
needed.

To overcome the limitation of the dipolar approximation,
the effective multipole method (Jones and Washizu, 1996)
employs higher-order multipoles of ascending order (Stratton,
1941); see Fig. 6. Using these multipoles, the general
expression for DEP force and torque can be derived to any
desired degree of accuracy. Consider a spherical dielectric
body with a complex permittivity εc of radius R, placed in a
medium with a complex permittivity constant εðlÞ under the
external time-dependent electric field of the form

eeðr; tÞ ¼ Re½eðrÞ expðiωtÞ�; ð67Þ

where the complex quantity eðrÞ is the phasor electric field
vector. The DEP force on the body can be derived using the
usual multipole expansion, as described earlier. The general
expression of the time averaged DEP force and electrorotation
torque are found as follows (Jones and Washizu, 1996):

hFðnÞi ¼ 1

2
Re

�
pðnÞ½·�ðnÞð∇ÞðnÞe�

n!

	
ð68Þ

and

hTðnÞi ¼ 1

2
Re

�
1

ðn − 1Þ! ½p
ðnÞ½·�ðn−1Þð∇Þðn−1Þ� × e�

	
; ð69Þ

respectively. In Eq. (68) the symbol ½·�ðnÞ is the n dot product
on the tensors, ð∇ÞðnÞ is the n vector ∇ operation, and the

FIG. 6. Stratton scheme (Stratton, 1941) for generation of the
moment of a general multipole of order nþ 1 using two particles
of opposite polarity of order n displaced by the vector dnþ1. From
Jones and Washizu, 1996.
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asterisk indicates the complex conjugate of the quantity.
Moreover, the quantity pðnÞ is the effective multipolar moment
and may be calculated as

pðnÞ ¼ 4πεlR2nþ1n
ð2n − 1Þ!! KðnÞð∇Þn−1e; ð70Þ

where εl ¼ ReðϵðlÞÞ and

KðnÞ ¼ εc − εl

nεc þ ðnþ 1Þεl : ð71Þ

The importance of higher-order moments for approximat-
ing the body was first investigated in a dielectrophoretic field
cage where the experiments showed a significant contribution
of the quadrupole forces for particles larger than a quarter of
the electrode spacing (Schnelle et al., 1999). The evolution of
biomedical technology toward microelectrodes and nano-
electrodes (Hughes, 2000; Freer et al., 2010) (see Fig. 7)
has resulted in an increase in the number of cases where a
higher-order approximation is inevitable. Moreover, under the
effect of an external uniform field, the only nonzero moment
of a spherical body is a dipole, but for nonspherical bodies
higher-order moments can become nonzero (Nili and Green,

2014). This fundamental difference is important because,
despite the fact that shape approximation by a sphere is an
attractive model widely used for force calculation in DEP (due
to its simplicity), most biological cells are not spherical.
Higher-order moment terms are shown to constitute more than
40% of the DEP force on nonspherical bodies such as
ellipsoidal and cylindrical particles (Nili and Green, 2014).

C. Maxwell stress tensor approach

As previously indicated, an alternative approach to calcu-
lating the DEP force is to determine the variations of the total
electrical energy of the body (Pohl and Crane, 1972) with
respect to changes in the geometric configurations. From the
discussions in Sec. II.C, using Eq. (32) the DEP force and
electrorotation torque on a body can be written as

FDEP ¼
Z
∂Ωþ

σMWndA ð72Þ

and

TROT ¼
Z
∂Ωþ

x × ðσMWnÞdA; ð73Þ

respectively.20 Upon solving Eq. (64) for local electric fields,
we can calculate the exact DEP force and electrorotation
torque on the particle using the previously mentioned inte-
grals; see Rosales and Lim (2005) and Al-Jarro et al. (2007).
In addition, using a calculation similar to that in Sec. III.B, we
can elucidate the precise approximation behind the EMM
formulas (62) and (63).
Unlike the EMM formulas (68) and (69), the MST method

based on Eqs. (72) and (73) is not restricted to spherical
homogeneous particles as long as the electrical field is
obtained by solving the boundary value problem in
Eq. (64). The MST method is essential for an accurate
estimate of the DEP force and electrorotation torque if the
cell dimension is comparable to that of the electrode
(Khoshmanesh et al., 2011) or if the cell moves to the
proximity of the electrode and the cell itself can affect the
electric field. Note that the MST approach has also been
combined with models that account for cell membrane

FIG. 7. Thin microelectrodes of 200 nm thickness used for
imposing DEP force on biological cells. Top panel: electric
field of 8 V with a frequency of 5 MHz is used to trap Jurkat
cells within the microsystem. The bar represents 20 μm.
Bottom panel: electric field of 5 V with a frequency of
10 MHz is used to position latex particles in different field
minima of the microsystem. The bar represents 50 μm. From
Müller et al., 1999.

20Consider an electric field harmonically varying in time with
the form

eðr; tÞ ¼ Re½eðrÞ exp ðiωtÞ� ¼ 1
2
½eðr; tÞ þ e�ðr; tÞ� ð74Þ

in the conductive medium and body. Substituting this electric field
into the Maxwell stress tensor (32), we can divide the stress into two
parts (Wang, Wang, and Gascoyne, 1997): the time averaged term

σ0
MWð1Þ ¼ 1

4
ReðξÞ½ðe ⊗ e� þ e� ⊗ eÞ − jej2I� ð75Þ

and the instantaneous term

σ0
MWð2Þ ¼ 1

4
ReðξÞ½e ⊗ eþ e� ⊗ e� − 1

2
ðe · eþ e� · e�ÞI�; ð76Þ

which vanishes under time averaging.
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viscoelasticity, which then has been used to calculate the
viscosity and shear elastic modulus of red blood cells
(Engelhardt, Gaub, and Sackmann, 1984; Engelhardt and
Sackmann, 1988). Moreover, the MST method can be applied
to the DEP-induced electrodeformation of biological cells
(Qiang et al., 2018).
We can obtain either positive or negative DEP depending on

whether the particle is more or less polarizable than the
medium at a given applied frequency. There is a critical
frequency at which we switch between nDEP and pDEP
(Fig. 5). In such a case, in Eq. (66) the factor K will become a
function of frequency-dependent dielectric constants. We may
then define the so-called crossover frequency for a DEP device
at which the DEP force is zero. The crossover frequency can
be evaluated both experimentally (Green and Morgan, 1999;
Wei, Junio, and Daniel Ou-Yang, 2009; Honegger et al., 2011)
and theoretically. The theoretical evaluation of the crossover
frequency is usually based on the effective dipole moment
method due to its simplicity. However, for the case of
spherical particles, when compared to numerical analysis
using the MST approach, the dipole moment method was
shown to be inaccurate and to significantly overestimate the
crossover frequency for particles with a diameter larger than
4.6 μm (Weng et al., 2016). This critical diameter is important
given that most biological cells have larger diameters.
Another instance where an application of the MST approach

has proven to be necessary is in the analysis of DEP and
electrorotation of particle-particle and particle-wall interactions.
The particle-particle interaction is important when suspended
particles that are randomly distributed in a medium are
subjected to a uniform electric field and form an oriented
chain structure along the direction of the electric field
(Takashima and Schwan, 1985; Velev, Gangwal, and Petsev,
2009). The so-called pearl chain that forms in this process
brings the particles into proximity with each other. Thus, the
symmetry of the nonuniform electric field around the center of
the particle breaks, which induces a mutual DEP force on each
particle. It has been suggested that the resulting interaction-
induced DEP force depends on the size of particles, the
interparticle distance, and a characteristic length scale that
quantifies the nonuniformity of the electric field (Kadaksham,
Singh, and Aubry, 2005); see Fig. 8. The particle-wall
interaction is important since most of the applications of
DEP occur in channel-bounded devices. The magnitude of
the DEP forces due to this interaction depends on the separation
gap between the particle and the wall.
An application of the EMM method for analyzing a

particle-particle interaction is valid when the distance between
the particles is larger than the particle diameter (Aubry and
Singh, 2006; Kang and Li, 2006). In the general case, the use
of the MST method is necessary. In the literature, the MST
model has been applied to particle-particle interactive motion
(Ai and Qian, 2010) and particle-wall interaction (Kang,
2015) using different numerical schemes (Kang and Li,
2006; House, Luo, and Chang, 2012; Hossan et al., 2013).
In the MST approach to particle-particle and particle-wall

interactions, the effect of hydrodynamic forces can be
accounted for by assuming a viscous fluid with a small
Reynolds number. The mass and momentum conservation
of the fluid is given by the following Stokes equations:

Re
∂v
∂t −∇2v −∇p ¼ 0; ∇ · v ¼ 0; ð77Þ

where Re is the Reynolds number and v and p are the fluid
velocity and pressure, respectively. The fluid velocity on the
jth particle surface is

vj ¼ Vpj þ ωpj × ðxsj − xpjÞ; ð78Þ

where Vpj and ωpj are the translational and rotational
velocities of the jth particle and xsj and xpj are the position
vector of the surface and the center of the particle, respec-
tively. The hydrodynamic force exerted on each particle is
then

Fhydro∶j ¼
Z

σHndAj; ð79Þ

where

σH ¼ −pIþ ½∇v þ ð∇vÞT� ð80Þ

is the Cauchy stress tensor. Consequently, using Eqs. (72),
(73), and (79) the translation and rotation of the jth particle is
described by

mpj dV
pj

dt
¼ FDEP þ Fhydro ð81Þ

FIG. 8. In a system of multiple particles in proximity to a wall,
the interaction of particles with each other and the surrounding
wall can break the symmetry of the electric field around the center
of each particle and induce a mutual DEP force between them.
The resulting force is a function of the particle size, the
interparticle (wall-particle) distance, and a characteristic length
scale that quantifies the nonuniformity of the electric field.
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and

Ipj
dωpj

dt
¼

Z
ðxsj − xpjÞ × ½ðσMW þ σHÞn�dAj; ð82Þ

where mpj and Ipj are the mass and moment of inertia of the
jth particle.
Simulation results based on the previous equations have

shown that nDEP particle-particle interactions tend to align
particles parallel to the dc field while pDEP tends to chain the
particles perpendicular to the field. Further, the particle-
particle interaction has also been investigated for an ac electric
field using a transient numerical method (Ai, Zeng, and Qian,
2014). This model accounts for the coupling in particle–fluid–
electric field interactions and showed that the nDEP always
tends to align the particles parallel to the applied ac field.
Finally, we highlight that most of the aforementioned

studies consider the dielectric bodies to be rigid. However,
biological cells often undergo large deformations under the
effect of the electric field. Few works have attempted to
combine DEP and electrodeformation of the cell. Exceptions
include works that studied the combined effect for droplets
(Kim et al., 2007; Singh and Aubry, 2007; Zagnoni and
Cooper, 2009). In an experimental study (Guido, Jaeger, and
Duschl, 2009), the mechanical properties of the cell were
measured using the deformation of the cell under the effect of
the DEP force. Deformation of a cell under hydrodynamic and
electrical forces in a cell trap was studied numerically (Le Duc
et al., 2008) for a single cell, but the bending energy of the
membrane was neglected. In another study, the dynamic
behavior of two cells under a nonuniform electric field
involving stretching and bending of the membrane as well
as intercellular aggregation was investigated using the MST
method (Ye, Li, and Lam, 2011).

IV. TOPOLOGICAL AND MORPHOLOGICAL CHANGE
IN LIPID MEMBRANES UNDER AN EXTERNAL
ELECTRIC FIELD

A biological cell will deform under the action of an external
electrical field even if the net force on the cellular body is zero
and there is no motion. The deformation can be due to
flexoelectricity or (more commonly) the Maxwell stress
mechanism. Cell membranes play a central role in the
mediation of the interaction between the mechanical defor-
mation of the cell and the electrical field. The lipid bilayer is
impermeable to ions and water molecules and ion channels
regulate what passes in and out of the cell. Electrically
speaking, the membrane can be thought of as a dielectric
capacitor embedded in an ambient conductive fluid; see Fig. 9.
The surrounding fluid maintains a potential difference across
the membrane and the in vivo transmembrane potential of the
biological cells is governed by the ion concentration of the
fluid inside and outside the cell. Typical values of this
transmembrane potential range from −40 to −70 mV
(Phillips et al., 2012). However, this preexisting transmem-
brane potential can be altered by the application of an external
electric field.
Under moderated electric fields, a vesicle merely deforms

and changes shape; e.g., an initially spherical vesicle can

transform into prolate, oblate, or spherocylindrical shapes.
High intensity electrical fields can create topological changes
such as the formation of pores in the lipid membrane, and thus
can increase permeability to drugs and charged molecules
(Weaver and Chizmadzhev, 1996). The pore formation proc-
ess can also trigger a fusion of vesicles provided that the
vesicles are brought into contact (Chernomordik and Kozlov,
2008). These processes have important applications in bio-
logical science ranging from materials characterization to drug
delivery (Vlahovska et al., 2009; Kim and Lee, 2017; Kar
et al., 2018; Kotnik et al., 2019).
Compared to lipid vesicles, the response of biological cells

to electric fields is somewhat more complicated due to the
presence of the cell cytoskeleton. The electric field can cause
conformational changes in cytoskeleton elements such as
actin filaments (Perrier et al., 2019) and microtubules
(Kirson et al., 2004) and/or can modify the chemical com-
pounds in the cytosol, which eventually may disrupt the
elements of the cytoskeleton (O’Brien, Salmon, and Erickson,
1997). Evidence suggests that the disruption of cytoskeleton
elements can affect membrane permeability when exposed to
electric fields (Muralidharan et al., 2021). Further, it has been
shown that electroporation of mammalian cells is directly
related to the thickness and integrity of the actin structure
(MacQueen et al., 2012). Aside from these general observa-
tions, we avoid discussion of the role of the cytoskeleton in an
electric field–cell interaction and refer the interested reader to
a recent review of the growing research in this subfield
(Graybill and Davalos, 2020). In this section, we summarize
the physical modeling of the topological and morphological
change in lipid membranes under the action of the electrical
fields.

A. Electrodeformation

1. Experimental observations

The change of shape of a biological cell or a vesicle
(electrodeformation) has been used to characterize the
mechanical properties of cells (Chen et al., 2011).
Experimental observations (Riske and Dimova, 2005, 2006;

FIG. 9. The lipid bilayer as a capacitor. The ionic solution acts
as the electrode and the impermeable lipid bilayer is the dielectric
material of the capacitor.
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Dimova et al., 2007; Aranda et al., 2008) show that the change
in the morphology of the vesicle under an electric field
depends not only on the type of the applied electric field
(ac or dc) but also upon the frequency of the field and the
conductivity of the interior and exterior solutions (σint and
σext, respectively); see Fig. 10. It is useful here to define the
“capacitor” charging time as relevant for a biological cell or a
vesicle. In the case of the membrane of a spherical vesicle, this
timescale is defined as (Grosse and Schwan, 1992)

τC ¼ RCm

�
1

σint
þ 1

2σext

�
; ð83Þ

where R is the vesicle radius, Cm is the membrane capaci-
tance, and σint and σext are the interior and exterior fluid
conductivities, respectively. This characteristic timescale
becomes important when one contends with exposure to ac
electric fields or dc fields with different pulse durations. Since
in a high frequency ac field the field direction changes faster
than the time required for the ions to change, the vesicle
remains spherical. However, as shown in Fig. 10, at low
frequencies the vesicle can adopt a prolate shape (if
χ ¼ σint=σext > 1) or undergo a prolate-oblate transition (if
χ ¼ σint=σext < 1) at ω ¼ 103 Hz (Aranda et al., 2008). In a
dc field, the change in morphology of the vesicle depends on
the ratio of the conductivity of the inner and outer fluids, as
well as the duration of the exposure to the electric field (Riske
and Dimova, 2005). For instance, vesicles are found to deform
to a spherocylindrical shape in the presence of salts (Riske and
Dimova, 2006). The spherocylindrical vesicles can adopt

prolate (χ > 1) or oblate (χ < 1) shapes. Riske and Dimova
also implied that the exposure of a vesicle to an electric field
for a prolonged period of time, even if the intensity is
relatively weak, can result in the rupture of the vesicle, while
exposure to a short pulsed high intensity field may not cause
such a drastic effect. This claim needs further investigation,
and Joule heating or electrochemical effects remain as relevant
features to explore.

2. Theory of vesicle morphology in a uniform ac and dc field

The early theoretical studies aimed at understanding elec-
trodeformation were based on the minimization of the total
free energy of the lipid membrane in an ac field (Helfrich,
1974; Winterhalter and Helfrich, 1988a; Kummrow and
Helfrich, 1991). The total free energy in these models
involved Helfrich elastic bending energy of the membrane
and the electrical energy defined over an initially spherical
vesicle. The electrical energy Welect of the system emerges
from work done by the force due to the Maxwell stress tensor
on the interfaces defined for three mediums: the interior fluid,
the membrane, and the exterior fluid. As a simplifying
assumption, earlier works would typically consider the con-
ductance of the exterior and the interior fluids to be the
same (σint ¼ σext ¼ σwater) (Winterhalter and Helfrich, 1988a).
However, an extension of the model (Peterlin, 2010;
Yamamoto et al., 2010) allowed for the asymmetric conduc-
tivity condition σext ≠ σint.
As we indicated in Sec. II.C, the mechanical effects of

electrical fields can be directly accounted for by the Maxwell
stress tensor. For an external ac field of constant amplitude,
the stationary shape of the vesicle can be determined using the
Euler-Lagrange equations (51). If the elastic behavior of the
membrane is specified as the Helfrich-Canham membrane
with the free-energy density function given by Eq. (53),
the stationary shape is dictated by Eq. (57), which, under
the assumption of small deflection in the sense that
ðH −H�Þ=H� ∼ ε ≪ 1, implies the following simplified
equations on S ¼ ∂Ω:

κbðH−H�ÞH2� þðκb=2ÞΔsH−2Hλ− ðteþ tbÞ ·n¼p;

∇sλþPnðteþ tbÞ¼ 0;
ð84Þ

where the traction te due to the Maxwell stress is given by
Eq. (46) and tb ≡ 0 if hydrodynamic effects are neglected.
The morphology of the vesicle under the application of an

electrical field is largely dictated by the electric traction te.
Explicit solutions can be found for spherical vesicles by
solving Eq. (40) if the external far field is uniform. In that
case, the electric potential for the three media
(i ¼ int; m; and ext) is given by (Jackson, 1962)

ξðiÞðr; θÞ ¼ −eðiÞc r cos θ þ μðiÞ cos θ
r2

; ð85Þ

where θ is the angle of the external electric field ee with the
position vector at each point and, assuming ϵðintÞ ¼ ϵðextÞ,

FIG. 10. Change in the lipid vesicle morphology in an ac field
for different frequencies and conductivity ratios. The conduc-
tivity inside the vesicles in μS=cm is 15 (squares), 65 (open
circles), and 130 (triangles). Four types of transition can be
distinguished. At higher frequency and irrespective of the
conductivity ratio, the vesicle exhibits a spherical shape. The
two arrows show the transitions from (1) prolate and (2) oblate
shapes to the spherical shape. The third type of transition occurs
at intermediate frequency level and by changing the conductivity
ratio. The fourth type of transition is observed only for χ < 1 and
by increasing the frequency level. From Aranda et al., 2008.
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eðintÞc ¼ 9jeejβ
ð2þ βÞð1þ 2βÞ − 2γ3ð1 − βÞ2 ;

eðmÞ
c ¼ 3jeejð1þ 2βÞ

ð2þ βÞð1þ 2βÞ − 2γ3ð1 − βÞ2 ;

eðextÞc ¼ jeej;
μðintÞ ¼ 0;

μðmÞ ¼ 3jeejr3intð1 − βÞ
ð2þ βÞð1þ 2βÞ − 2γ3ð1 − βÞ2 ;

μðextÞ ¼ jeejðγ3 − 1Þð1 − βÞð1þ 2βÞ
ð2þ βÞð1þ 2βÞ − 2γ3ð1 − βÞ2 : ð86Þ

In Eq. (86) β ¼ ϵðmÞ=ϵðintÞ, γ ¼ rint=rext, and rint and rext are
the interior and external radii of the vesicle, respectively.
The resulting vesicle shape at low frequencies of the

electric field in this model is always prolate for the
symmetric conductivity condition. The asymmetric conduc-
tivity condition can result in both prolate and oblate shapes.
However, the quantitative results are not consistent with
experimental observations (Yamamoto et al., 2010). The
underlying mechanism responsible for the observed shape
transition is suggested to be the electric pressure of the
Maxwell stress, as well as the force density resulting from
the interaction of the electric field with the accumulated
charges by the so-called Maxwell-Wagner mechanism; see
Fig. 11 (bottom panel).
The basic developments described thus far have been

extended in several ways. For example, Gao, Feng, and
Gao (2009) considered additional contributions of surface
tension and flexoelectricity. They found that flexoelectricity
can significantly impact the morphology of vesicles in an
electrical field and induce asymmetry in its evolution. They
also noted that flexoelectricity may cause a change in the
equilibrium position of a vesicle in an electric field (compared
to if flexoelectricity is ignored), thus opening up the prospects
for using vesicle flexoelectric coupling as a route to manipu-
lating cells and vesicles.
A more comprehensive theory that enjoys good quantitative

agreement with experimental observations takes into account
the variation of membrane tension resulting from the con-
served number of lipid molecules in each monolayer, as well
as the hydrodynamics of the interior and exterior media
(Vlahovska et al., 2009; McConnell, Vlahovska, and
Miksis, 2015; Liu et al., 2017). Such a framework can be
developed based on the balance of all the forces exerted on the
membrane. Denote by y ¼ xð·; tÞ a time-dependent para-
metrization of the current configuration ∂Ωt of the membrane
and by vðiÞð·; tÞ (i ¼ ext; int) the velocity field. The flows then
necessarily satisfy the following Stokes equations:

μðiÞ∇2vðiÞ −∇pðiÞ ¼ 0; ∇ · vðiÞ ¼ 0; ð87Þ
where μðiÞ denotes the viscosity of the interior and exterior
fluids. On the interface ∂Ωt, we assume that there is no
slippage between the membrane and flow, implying that

vðextÞ ¼ vðintÞ ¼ vðmÞ ≔
dx
dt

on ∂Ωt: ð88Þ

The boundary value problems in Eqs. (87) and (88)
completely determine the interior and exterior flows for
any given motion of the membrane vðmÞ, and hence determine
the hydrodynamic traction on the membrane in terms of vðmÞ:

fhydro ¼ fhydro½vðmÞ� ¼ ðThydro∶ext − Thydro∶intÞn; ð89Þ

where

Thydro
jk ¼ −δjkpþ μ

�∂vj
∂xk þ

∂vk
∂xj

�
: ð90Þ

Setting tb ¼ fhydro½vðmÞ� and p ¼ pðintÞ − pðextÞ in Eq. (84), we
obtain an evolution equation for the parametrization
y ¼ xð·; tÞ. Explicit solutions were obtained for quasispherical
membranes by Liu et al. (2017).
According to the results of this model, at low frequencies

prolate deformation occurs due to the electric pressure
resulting from polarization charges pulling the vesicle at
the poles. On the other hand, the oblate shape occurs due
to the negative pressure and transient electrohydrodynamic
flow resulting from the induced free surface charges; see
Fig. 11 (top panel).

FIG. 11. The suggested underlying mechanism of electrodefor-
mation based on electrohydrodynamic forces and the surface
charge accumulation. Top panel: a vesicle in an electric field
experiencing the streamlines of the electrohydrodynamics (EHD)
flow and the surface charge distributions. For the vesicle to the
left (right) the interior fluid is more (less) conductive than the
exterior one and the resulting shape is prolate (oblate) because
the EHD flow pushes fluid toward the poles (equator). From
Vlahovska et al., 2009. Bottom panel: electric charge distribution
using the Maxwell-Wagner mechanism on a vesicle in the electric
field. The interaction of the accumulated charge with the electric
field results in force densities that for the left (right) vesicle,
where σint > σext (σint < σext) creates prolate (oblate) shapes.
Adapted from Yamamoto et al., 2010.
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In practical applications pertaining to the electrodeforma-
tion of vesicles, a well-calibrated theory can be used to extract
electromechanical properties of membranes, such as bending
rigidity, tension, and capacitance, through a stepwise increase
of the ac field strength and recording the shape deformation
of the vesicle (Harbich and Helfrich, 1979; Niggemann,
Kummrow, and Helfrich, 1995; Gracia et al., 2010; Faizi,
Dimova, and Vlahovska, 2021), as shown in Fig. 12.
Unlike the stationary shapes of the vesicle under an ac field,

vesicle deformation under a short pulsed dc field is transient
and dynamic (Dimova et al., 2009). The electric field used in
these experiments often has a high strength and result in
poration of the membrane. Owing to the transient nature of the
response, for vesicles that are hundreds of nanometers in size,
direct optical observation is difficult and alternative tech-
niques are used to extract data about poration, and deforma-
tion of the vesicle (Kakorin, Liese, and Neumann, 2003). In
contrast, when giant vesicles of tens of micrometers in size are
used in the experiments, the direct optical observation can
provide significant useful information about the dynamic
response of the vesicle. A high-speed imaging system is used
to study the deformation and relaxation of the vesicle, and the
observed results are explained using the effect of the Maxwell
stress tensor (Riske and Dimova, 2005) that results in the
following lateral tension in the membrane (also called electric
tension) λe (Needham and Hochmuth, 1989):

λe ¼ ϵ

�
t
2t2e

�
ξ2trans; ð91Þ

where t is the total thickness and te is the dielectric thickness
of the lipid membrane. As with the ac field, the deformation
depends on the ratio of the conductivity of the solution inside
and outside the vesicle. However, at a critical value of the
transmembrane potential the poration process begins (see
Sec. IV.B) and the bilayer becomes conductive and permeable.
Thus, below the electroporation limit the vesicle keeps its
integrity and behaves like a dielectric insulator, while above
the threshold due to the poration and leakage of the volume no
area or volume conservation is in place and the deformation
can depend on the change in area or volume (Riske and
Dimova, 2005). Thus, to create a prolate-oblate transition
using a dc field, the single pulse should remain below the
poration threshold. However, such pulse intensity might not
be strong enough to allow observation of the transition. A
proposed solution to this problem involves the application of a
two-step pulse where the first pulse has a high intensity but its
duration is less than the characteristic timescale of the

membrane τC and the second pulse has an intensity lower
than the poration threshold. If σint < σext, under this two-step
pulse the vesicle first adopts an oblate shape and then
transitions to a prolate spheroid shape (Salipante and
Vlahovska, 2014).
The conductivity ratio is not the only factor that regulates

the shape of the vesicle deformation under a strong dc field. In
the presence of salt outside the vesicle, irrespective of its
content, a somewhat irregular deformation of the vesicle may
be observed (Riske and Dimova, 2006). The presence of salt
adds a compressive force perpendicular to the electric field
that results in alignment of the vesicle wall with the electric
field lines (Riske and Dimova, 2006). When σint < σext the
vesicle deforms into a disk shape, when σint ∼ σext the vesicle
adopts a squarelike cross section, and when σint > σext the
vesicle deforms into a short-lived prolate shape (Riske and
Dimova, 2006); see Fig. 13.

B. Electroporation

1. Experimental observations

A high intensity external electric field can form transient
and conductive electropores in cell membranes (Fig. 14). This
well-studied phenomenon of electroporation has been widely
used to transport drugs, DNA, nucleic acids, and other types of
molecules into the cell (Sukharev et al., 1992; Gehl and Mir,
1999; Xie et al., 2013; Frandsen, Vissing, and Gehl, 2020).
Early studies of cell membranes (during the 1950s and

1960s) under high intensity electric fields showed that at a
critical membrane potential a sudden increase in transmem-
brane current occurs (Stampfli, 1958; Crowley, 1973;
Zimmermann, Pilwat, and Riemann, 1974; Hibino et al.,

FIG. 12. An initially spherical vesicle deforms into an ellipsoid
under a uniform ac electric field. This electrodeformation may be
used to determine the electromechanical properties of the
membrane. From Faizi, Dimova, and Vlahovska, 2021.

FIG. 13. Electrodeformation of vesicles under a dc field. (a) If
there is no salt in the exterior solution, the vesicle will deform into
a prolate shape. If salt is added to the exterior solution, depending
on the conductivity ratio of the exterior to the interior solution,
the vesicle can deform into (b) a disk, (c) a square, or (d) a tube.
From Riske and Dimova, 2006.
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1991). The dielectric breakdown of the membrane and
formation of pores was suggested as the reason behind the
increase in current. No direct evidence of electroporation was
initially found, and this phenomenon was primarily studied
using indirect indicators21 such as the change in transmem-
brane potential and the change in fluorescence of membrane in
the presence of fluorescence dye (Kinosita et al., 1988;
Bartoletti, Harrison, and Weaver, 1989; Tekle, Dean
Astumian, and Boon Chock, 1991; Djuzenova et al., 1996;
Sun et al., 2006; Pakhomov et al., 2007). Some of these
characterization approaches revealed that pores could also be
resealed without permanent damage to the cell membrane
(reversible electroporation), provided that the electric field is
applied in short pulses and the ensuing transmembrane
potential difference does not exceed a threshold that is
governed by the type of cell and the electrical field pulse
parameters (Baker and Knight, 1978; Benz, Beckers, and
Zimmermann, 1979; Gauger and Bentrup, 1979; Lopez, Rols,
and Teissie, 1988; Weaver and Chizmadzhev, 1996). The
formation of these reversible pores then forms a facile route
for introducing small molecules (such as drugs and DNA) into
the cell (Zimmermann, Vienken, and Pilwat, 1980; Wong and
Neumann, 1982; Fromm, Taylor, and Walbot, 1986).
However, a transmembrane potential larger than the threshold
or with a sufficiently long pulse duration can result in the
expansion of the pores and rupture of the lipid membrane
(irreversible electroporation) (Abidor et al., 1979).
One important feature of this phenomenon is that the

membrane lifetime, defined as the time span after the
application of a high intensity electric field and prior to
formation of the pores, does not show a deterministic

behavior. In fact, repeating the same experiment on lipid
membranes shows that, while the transmembrane current after
the breakdown is qualitatively similar, the lipid membrane
lifetime behaves stochastically. Higher intensity electric fields
increase the probability of rupture of the lipid membrane and
decrease the membrane lifetime (Abidor et al., 1979; Benz,
Beckers, and Zimmermann, 1979).

2. Simplified theoretical models

Many of the simpler models do not explicitly model the
pore itself. We first describe a minimal theoretical model of
electroporation before discussing the state-of-the-art models.
This model is based on the notion that once a “critical” electric
field is reached in the membrane a pore will be formed. Prior
to the sudden increase in the conductivity of the membrane
(upon the pore formation), Maxwell’s equations (3) and (4) are
used to calculate the resulting transmembrane potential under
the action of an imposed external electric field. For instance,
exerting a field e0 on a spherical cell induces transmembrane
potential that can be calculated to be (Plonsey and Altman,
1988; Vernier et al., 2004)

ξtrans ¼ 1.5Rje0j cos θ½1 − expð−t=τCÞ�; ð92Þ

where θ is the angle between tangents at the site on the
spherical cell, τC is the membrane charging time constant as
described by Eq. (83), t is the time after initiation of the
external field, and R is the cell radius. The transmembrane
potential can be related to the membrane lateral tension using
Eq. (91). If the critical lateral tension required for membrane
rupture is known, then the model can predict the critical
membrane potential at which electroporation will occur. This
model has been applied to problems involving small external
electric fields where the transmembrane potential ξtrans <
500 mV (Needham and Hochmuth, 1989; Vernier et al.,
2004). However, this simplified model is unable to describe
many features of the electroporation phenomenon, such as the
mechanistic underpinnings of why pores are formed and the
stochasticity of the membrane lifetime.
The initial efforts to describe the pore formation relied on

deterministic theories suggesting that electromechanical col-
lapse of the lipid membrane results in rupture (Crowley,
1973). The lipid membrane in this approach is replaced by a
uniform isotropic elastic material sandwiched between two
semi-infinite electrically conducting liquids. The liquids
maintain a fixed transmembrane potential, and hence an
electrical pressure Pe ¼ ð1=2Þεdðξ=tÞ2 is exerted on the
membrane. Assuming a constant Young’s modulus E, the
total compression of the elastic membrane can be derived by
integrating Hooke’s law over the thickness of the membrane
and equating it with the electrical pressure as follows:

E
Z

t

t0

dt0

t0
¼ E ln

�
t
t0

�
¼ −

1

2
εd

�
ξ

t

�
2

; ð93Þ

where t0 is the original thickness of the membrane. It can be
shown that the compression of the elastic membrane derived
from this equation diverges at εdξ2=2Et20 ≃ 0.18, which indi-
cates an electromechanical instability. This model overestimates

FIG. 14. Illustration of electroporation in lipid bilayers. The
pores can be unstable hydrophobic pores or metastable hydro-
philic pores. The mechanism can be used to deliver different
materials from drugs to DNA molecules into the cell.

21Experimental methods are rapidly being developed (Nguyen
et al., 2012; Sengel and Wallace, 2016) that may provide direct
information on cellular deformation and phenomenon such as
electroporation.
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the transmembrane potential required for the rupture of the
membrane by an order of magnitude. Alternative approaches
were developed to overcome this drawback. These include
electrohydrodynamic stability models (Michael and O’Neill,
1970; Taylor andMichael, 1973), awave instabilitymodel of the
membrane that accounts for viscoelastic properties (Maldarelli
et al., 1980; Steinchen, Gallez, and Sanfeld, 1982), and a model
that takes into account the effect of the electric field on the
orientation of the lipid headgroup dipoles and its coupling with
the membrane shape (Bingham, Olmsted, and Smye, 2010).
While these alternative approaches were able to more accurately
predict the critical transmembrane potential, they all failed to
account for the stochastic behavior of electroporation as well as
the strong dependence of the membrane lifetime on the trans-
membrane potential.

3. Theoretical models explicitly taking
into account pore formation

The most comprehensive models consistent with experi-
mental observation are stochastic in nature. They employ an
energetic balance and the mechanics associated with the
process of pore formation as a starting point. The initial step
of electroporation is the formation of short-living hydrophobic
pores; see Fig. 15(a). Next, owing to the inversion of lipids
molecules on the edge of the pore, the hydrophilic pores will
form; see Fig. 15(b).
In an initial model that accounts only for mechanical

effects, formation of a pore can be considered a balance
between the gain in the edge energy γ of the pore and the loss
of surface tension energy Γ in the circular region of the pore
(Litster, 1975; Taupin, Dvolaitzky, and Sauterey, 1975):

WporeðrpÞ ¼ 2πγrp − Γπr2p. ð94Þ

The energy contribution of the electrical effects was later
included by Abidor et al. (1979) predicated on the notion that
the lipid membrane behaves like a capacitor. The capacitance
of the membrane changes once a pore is formed and the “lost”
lipid membrane material is replaced by water. For a circular
pore of radius rp, the electrical energy contribution may be
written as

WelectðrpÞ ¼ 1
2
πCLWξ

2
transr2p;

where CLW ¼ ðεðwÞd =εðmÞ
d − 1ÞC0 is the change in the specific

capacitance of the membrane with the pores, εðwÞd and εðmÞ
d are

the permittivities of the pure water and lipid membrane,
respectively, and C0 is the capacitance of the pore free
membrane. Upon minimizing Wpore þWelect against pore size
rp, with transmembrane potential ξtrans as a parameter, we can
predict whether the formation of pores is energetically
favorable and, if so, the consequent equilibrium pore size.
The previously mentioned electrical energy assumes that

both the membrane and water filling the pore are purely
dielectric and the system is always kept at a fixed trans-
membrane potential ξtrans. Such assumptions are valid only for
small pores with negligible conductance. Even an extension of
this model that accounts for the flow of current through the
pores (Pastushenko and Chizmadzhev, 1982) is applicable
only to instances that result in small pores (rp < 1 nm) and
does not provide accurate results for larger pores. Formation
of small pores is often observed in experiments with high
intensity electric field and short pulses (Kakorin and
Neumann, 2002). However, experiments that are performed
with the goal of delivering materials such as DNA into the cell
require a larger pore size with diameters in the range of
tens of nanometers.22 Such larger pores can be created by
using low intensity and long duration pulses23 (Gehl and Mir,
1999; Vanbever et al., 1999).

FIG. 15. Geometrical parametrization of the two types of pores: (a) hydrophobic and (b) hydrophilic. From Neu, Smith, and
Krassowska, 2003.

22The underlying mechanism of gene transfer is not well under-
stood. For some DNA molecules, an endocytosislike mechanism
follows electroporation (Chernomordik, Sokolov, and Budker, 1990).
It has also been suggested that genes of all different sizes can get
direct access to the cytosol, although it is not clear whether these
genes translocate the membrane using large enough pores (Sachdev
et al., 2020). For a comprehensive review of these underlying
mechanisms, see Rosazza et al. (2016).

23For decades, millimicrosecond pulses have been used in electro-
poration to facilitate DNA transfer. However, recently it was shown
that gene transfer can also be achieved using nanosecond pulses by
regulating pulse repetition frequency (Ruzgys et al., 2018).
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A more rigorous approach is necessary to account for the
general behavior of the pores at all sizes and over the entire
timescale of the poration process. Such a model includes
electromechanical effects via the Maxwell stress and stochas-
tic processes pertaining to the evolution of pores. To that end,
we consider the geometry of the pore in Fig. 15. Both the
membrane and the ambient fluid are assumed to be dielectric
with complex dielectric constants. From a fundamental view-
point, the electrical force that drives the formation and growth
of pores has to be conservative and hence can be written as the
derivative of the energy WelectðrÞ. Accordingly, the rate of
work done by the electrical forces on the membrane is given
by (Neu, Smith, and Krassowska, 2003)

d
dt

WelectðrÞ ¼ v
d
dr

WelectðrÞ ¼
Z
S
v cos αðn · σMWnÞda;

where v ¼ dr=dt is the rate of change of the pore radius, the
Maxwell stress σMW is given by Eq. (32) and evaluated at the
exterior boundary of the membrane, S is the surface of
the pore (in Fig. 15), and n is the outward normal on the
membrane. At any given pore radius, we can solve the
electrostatics equation and find the Maxwell stress. For
the cylindrical and toroidal geometry of the pore [which
represents hydrophobic and hydrophilic pores, respectively, as
shown in Fig. 15 (Smith, 2011)], the relevant quantities must
be computed numerically, but the following analytical (and
approximate) expression for a toroidal pore can be derived
(Neu, Smith, and Krassowska, 2003; Son et al., 2016):

WelectðrpÞ ¼ −Fmax

�
rp þ rh ln

�
rt þ rh

rp þ rt þ rh

�	
ξ2trans; ð95Þ

where rt and rh are constants and Fmax is the maximum pore
expanding force.24A similar expression may also be obtained
for a cylindrical pore (Neu, Smith, and Krassowska, 2003).
Finally, we note that the formation of pores requires a

packing of lipids along the wall side of the pore. This effect,
especially for narrow pores (rp ≪ t), leads to a substantial
deformation of the molecular order. This requires one to
account for an additional energy contribution arising from
the strong hydration interaction that causes repulsive force
between the hydrophilic compounds of the pore wall (Glaser
et al., 1988). The contribution due to this steric repulsion of
the lipid headgroups may be defined as (Smith, 2011)

WstericðrpÞ ¼ B

�
r�
rp

�
b
þ C; ð96Þ

in which B, C, and b are phenomenological constants and r� is
the radius of the pore at the peak of the energy barrier before
the rupture (Abidor et al., 1979; Smith, 2011).
To summarize, the total free energy of the pore formation

can be written as

WporeðrpÞ ¼ 2πγrp − Γπr2p þWstericðrpÞ þWelectðrpÞ. ð97Þ

By examining the variation of the total free energy of the pore
as a function of the pore radius rp for different transmembrane
potentials (Smith, 2011), we can observe a minimum after an
initial energy barrier for ξtrans < 300 mV. This is indicative of
the presence of stable pores at low transmembrane potential.
Once the transmembrane potential is amplified, this minimum
vanishes and a high intensity electric field will result in the
rupture of the membrane (Kotnik et al., 2019), provided that
the pulse duration is long enough.
In addition to the prediction of the critical transmembrane

potential, a stochastic theory of electroporation is considered
(Weaver and Mintzer, 1981; Weaver and Chizmadzhev, 1996;
Neu and Krassowska, 1999) to predict the membrane lifetime
prior to rupture as well as the probability distribution of the
pore sizes. The stochastic models are predicated on the
energetic considerations that were just discussed. In one of
the approaches, a probability distribution function (PDF)
of pore size n ¼ nðrp; tÞ (Pastushenko, Chizmadzhev, and
Arakelyan, 1979) was introduced. In other words, nðrp; tÞ is
the normalized number density of pores with a size between rp
and rp þ drp at t. Treating pores as classical noninteracting
entities, we may postulate the probability flux of the pores in
pore radius space to be given by

Jpore ¼ −Dpore

� ∂n
∂rp þ

n
kBT

∂Wpore

∂rp
�
; ð98Þ

where Dpore is the pore diffusion constant and kBT is the
thermal energy. That is, the rate of change of the probability
satisfies the condition that, for any r2 > r1 > 0,

Z
r2

r1

∂nðrp; tÞ
∂t drp ¼ −Jporeðr2; tÞ þ Jporeðr1; tÞ: ð99Þ

Inserting Eq. (98) into Eq. (99) and sending r2 → r1, we
obtain the evolution of the PDF n ¼ nðrp; tÞ of the electropore
size as

∂nðrp; tÞ
∂t ¼ Dpore

∂
∂rp

� ∂n
∂rp þ n

kBT
∂Wpore

∂rp
�
; ð100Þ

which can be recognized as the Smoluchowski or the Fokker-
Planck equation (Freeman, Wang, and Weaver, 1994). Like
the Liouville equation for a Hamiltonian system of interacting
particles, the Smoluchowski equation contains complete
information on the dynamics of the pores (Chavanis, 2019).
In fact, in a system of Brownian particles we can derive the
Smoluchowski dynamics of the particles using a Liouvillian
evolution of the full classical model (Prigogine, 2017;
Fantoni, 2019).
Equation (100) can be solved to derive a transmembrane

potential–dependent average membrane lifetime (Weaver and
Chizmadzhev, 1996). The population of pores has a strong
dependence on the electric pulse parameters (Barnett and
Weaver, 1991). However, a numerical solution of Eq. (100)
predicts that for reversible electroporation long pulse dura-
tions result in the creation of a small number of pores with

24Strictly speaking, it is a forcelike term but not an actual force
since its dimensions are those of force per volt2.
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large diameters (on the order of tens of nanometers) while
short pulse durations create a larger number of small-sized
pores (∼1 nm).
The theoretical models presented for electroporation have

been further improved by accounting for other parameters
like membrane curvature and surface tension (Neu and
Krassowska, 1999; Smith, Neu, and Krassowska, 2004),
the effects of conductivity of the membrane due to pore
creation (Freeman, Wang, and Weaver, 1994; Krassowska and
Filev, 2007), and the combined effect of electroporation and
electrodeformation of the lipid membrane (Shamoon et al.,
2019). When these models use appropriate values for the
model parameters, they appear to be in good agreement with
experimental observations and lead to reasonable predictions.

C. Electrofusion

The fusion of cells and vesicles in living organisms is a vital
process for life that allows cells to take cellular and subcellular
material and components. The in-plane fluidity and flexibility
of the lipid membranes of the vesicles and cells in proximity
allow them to destabilize their structure and deform substan-
tially to fuse together. The destabilization of the structure of
the lipid bilayer that often accompanies the creation of pores
corresponds with the crossing of a large energy barrier. For the
in vivo examples of fusion, such as synaptic vesicle fusion
(Rizo and Rosenmund, 2008) and exocytosis (Zhou et al.,
2017), crossing this energy barrier requires a docking of
proteins for triggering the process; see Fig. 16(b). The in vitro
examples of fusion of vesicles, which lack docking proteins,
need a different kind of driving force for a crossing of
the energy barrier of the lipid bilayer (Chernomordik and
Kozlov, 2008). This driving force can be membrane stress

(Cohen, Akabas, and Finkelstein, 1982; Shillcock and
Lipowsky, 2005), a photosensitive surfactant (Suzuki et al.,
2017), or an electric field (Strömberg et al., 2000).
The fusion of cells and vesicles using an electric field is

called electrofusion. This process can be precisely controlled
and used for applications including gene transfer, drug
delivery (Schoeman et al., 2018; Geboers et al., 2020),
antibody production, and the preparation of cell vaccines
for cancer therapies (Kandušer and Ušaj, 2014). Early efforts
at electrofusion were reported at around the same time that
advances were made in the application of electroporation
(Sencia et al., 1979; Zimmermann and Scheurich, 1981). This
is due to the fact that the initial step for triggering the
mechanism of electrofusion is similar to electroporation, in
which the membrane of the vesicles that are brought into
contact experience electrically mediated destabilization of
their structure; see Fig. 16(c).
The electrofusion mechanism often begins with a dielec-

trophoresis mechanism where an ac electric field aligns the
vesicles. Next a dc field is applied that amplifies the trans-
membrane potential of the membrane beyond a critical value,
thereby causing poration. Necking of the membranes occurs at
the contact area. This was first observed using fast video
microscopy (Haluska et al., 2006; Riske et al., 2006). Vesicles
in the absence of salt were found to fuse at multiple necks,
while the presence of salt resulted in a single or smaller
number of fusion necks. The opening of the fusion neck with
radius 2 μm was fast (100 μs) due to the dissipation of high
membrane tension (Dimova, Riske, and Damijan, 2016).
However, once the tension is released, the opening slows
down at larger radii until the completion of fusion and the
formation of a single vesicle.
From a practical viewpoint a process like cell-cell electro-

fusion can be used for the preparation of hybrid cells for
several biomedical applications (Scott-Taylor et al., 2000).
Moreover, electrofusion of vesicles can be used to mix their
contents (Yang, Lipowsky, and Dimova, 2009) [see Fig. 17
(top panel)] or their membrane (Bezlyepkina et al., 2013) [see
Fig. 17 (bottom panel)].
To our knowledge, models of vesicle electrofusion that

include the pore formation and the large deformation of the
necking process have not been developed. However, there is
an extensive literature on the mechanism of vesicle fusion in
the absence of electric fields (Shillcock and Lipowsky, 2006;
Kasson, Lindahl, and Pande, 2010). It will be interesting to see
whether future investigation of the effect of electric field on
the mechanism of vesicle fusion can provide more insight into
the process.

D. Electrostatics and membrane rigidity

Thus far we have provided some examples of morphologi-
cal changes to the cell membrane under the effect of the
electric field. Analyzing the shape of the membrane during
these morphological changes requires knowledge of the
membrane elastic properties, namely, the bending rigidity
κb and the Gaussian rigidity κg. Lipid membranes are complex
structures made of two monolayers of amphiphile lipid
molecules surrounded by water. The elastic resistance
emerges primarily from the energy required to displace the

FIG. 16. Lipid membrane fusion. (a) Vesicles are brought into
contact, and the necking of the vesicles then begins. (b) Docking
proteins cross the energy barrier of destabilization of the lipid
membrane. (c) The structure of the lipid membrane is broken
using electroporation, which serves as a precursor to fusion. From
Haluska et al., 2006.
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lipid molecules from their equilibrium configuration in this
structure. The bending of the membrane involves compression
in one monolayer and tension in the other. Thus, the bending
rigidity depends on the bilayer thickness t and the area
compression modulus Ka; for further details, see Sec. V.4
of Boal (2001).
In addition to short-range lipid-lipid interactions, the elastic

properties of the lipid membranes may also be affected by
long-range interactions between molecules such as van der
Waals, electrostatic interactions (Dean and Horgan, 2006) and
electromechanical coupling such as flexoelectricity (Liu and
Sharma, 2013). The effect of electrostatic interactions was
originally studied by investigating the interactions of mem-
brane surface charges predicated on the Poisson-Boltzmann
mean-field theory (Winterhalter and Helfrich, 1988b;
Lekkerkerker, 1990; Kumaran, 2001). In this approach, a
net curvature is imposed on the membrane and the change in
electrostatic energy is calculated. The correction to the
bending and Gaussian rigidity is determined from the addi-
tional contribution to the curvature energy. The results of these
studies showed that, for fixed symmetric surface charges,
the renormalization of the bending rigidity κb is positive due to
the repulsive forces between the charges. However, for the
Gaussian rigidity κg, the renormalization is negative.
Experimental evaluations of the rigidity of the charged

membrane have been in good agreement with theoretical
results (Bivas and Ermakov, 2006; Loubet, Hansen, and
Lomholt, 2013). A common tool for systematic measurement
of these quantities are giant unilamellar vesicles (GUVs). Use
of GUVs allow good control of composition; in addition, the
measurements are not affected by high membrane curvature,

as may be the case in submicron-sized liposomes (Faizi et al.,
2019). Various GUVs have been used to measure the bending
rigidity of lipid membranes with different mole fractions of
ionic surfactants, and the results show an increase in rigidity
by up to 10kBT (Rowat, Hansen, and Ipsen, 2004; Vitkova
et al., 2004; Mitkova et al., 2014).

V. ION CHANNELS: ION TRANSPORT, GATING
MECHANISM, AND IMPLICATIONS FOR THE SENSORY
SYSTEM

As previously mentioned, the lipid membrane is imper-
meable to ions. Consequently, biological cells rely primarily
on membrane proteins like ion channels and pumps for the
transport of ions into and out of the cell.25 Ion channels are
essentially gated transmembrane proteins that selectively
allow only particular ions to pass through while filtering
others. The various functions of ion channels are crucial for
the regular operation of biological cells in all animals and
range from maintaining the membrane potential to regulating
the volume of the cell (Hille, 2001). In particular, in excitable
cells like neurons and muscle cells, the transmission of
electrical signals containing information relies on positively
charged ions like potassium, sodium, and calcium moving in
and out of the cell through ion channels (Zheng and
Trudeau, 2015).
The large family of ion channels can be classified based on

their gating mechanism and the type of ion that they transport
(Hille, 2001). Classification based on the gating mechanism
relies on the stimulus that triggers the opening and closing of
the channel. This stimulus can be the change in membrane
potential, the exerted mechanical force, the binding of specific
ligand molecules, or other stimuli (Alberts, 2018). In particu-
lar, voltage-gated ion channels open and close in response to
the change in membrane potential as a result of the interaction
of the electric field with the channels’ protein structure. Thus,
these channels provide a fine example of the coupling of
mechanical deformation and electrostatic fields. The voltage-
gated ion channels are highly selective and are classified based
on the type of ion that they can transport. The five main groups
of voltage-gated ion channels are represented in Fig. 20.
Voltage-gated ion channels are found mostly in excitable

cells such as nerve and muscle cells and facilitate the
propagation of an electric signal. This electrical signal occurs
as a fast spike called the action potential and is the basis of
intercellular communication. It is of fundamental importance
to most biological processes, from the transmission of nerve
impulses for controlling our actions to the underlying mech-
anisms responsible for our perception of reality through our
senses (Phillips et al., 2012). To provide more insight into the
function of ion channels, we first present the basic mechanism
of action potential propagation and the crucial role of voltage-
gated ion channels in this mechanism.

FIG. 17. Electrofusion as a microreactor. Top panel: for mixing
large vesicles loaded with Na2S in red (left) and CdCl2 in green
(right). The final product is quantum-dot-like CdS nanoparticles
visualized under laser excitation. From Yang, Lipowsky, and
Dimova, 2009. Bottom panel: for mixing lipid components.
Vesicle 1 is composed of eSM/cholesterol (Chol) (0=70=30),
and vesicle 2 is composed of DOPC/Chol (80=0=20). A high
intensity electric field (400 kV=m) with a short duration (150 μs)
was exerted on the vesicles. From Bezlyepkina et al., 2013.

25The transport of ions in ion channels is a passive mechanism
where the gradient of ion concentration and the electric potential
regulate the direction of transport. However, in ion pumps the release
of energy from ATP molecules provides an active mechanism that
pushes the ions against the gradient of ion concentration and the
electric potential (Gadsby, 2009).
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Figure 18 (top panel) shows a typical nerve cell and its
axon, where the signal can propagate down to the nerve
terminal. The main compartments of the axon are the myelin
sheath and the nodes of Ranvier. The myelin sheath is an
extended plasma membrane that acts as an insulator and
allows the signal to transmit quickly and effectively. The
voltage-gated sodium and potassium channels are preferen-
tially accumulated at the nodes of Ranvier. After the signal is
generated in the cell body, it travels down the myelin sheath
and arrives at the nodes of Ranvier. The ion channels,
originally in the closed state at the nominal membrane resting
potential, sense the arrival of the signal due to slight
depolarization of their medium. Once this slight depolariza-
tion (or graded potential) reaches a critical value, the

probability of the channels being in the open state increases.
First, voltage-gated sodium channels that are exposed to the
graded potential open and allow the passage of Naþ ions into
the cell, resulting in further depolarization of the cell mem-
brane. Next, as the Nav channels begin to close, the voltage-
gated potassium channels open and allow Kþ ions to flow out
of the cell, resulting in repolarization of the membrane; see
Fig. 18 (middle panel). In a similar mechanism, the neighbor-
ing ion channels at the location of the action potential sense
the slightly depolarized membrane and the process repeats,
allowing the spike to travel down the nerve and to the next
myelin sheath (Ashcroft, 1999; Bean, 2007). The process also
involves the flow of Ca2þ and Cl− ions, which affect the shape
of the spike. Once the spike has traveled down the axon,

FIG. 18. Top panel: illustration of a typical nerve cell. The action potential travels down the axon. The nodes of Ranvier are enriched in
ion channels that allow the exchange of ions and the regeneration of the action potential at these nodes. Middle panel: the ion exchange
includes the flow of Naþ ions into and Kþ ions out of the nerve cell. Bottom panel: voltage-gated ion channels open and close in
response to a change in transmembrane potential and allow the transport of ions.
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the action of the ion pumps helps the nerve cell return to its
resting state.
Extensive experimental and theoretical research on the

mechanisms underpinning their selectivity, gating, and ion
transport has been motivated by the crucial role of ion
channels in biological processes. Arguably the first math-
ematical description of the permeability of the membranes to
Kþ and Naþ ions and propagation of the action potential were
developed by, in a now classic work, Hodgkin and Huxley
(1952) without the explicit knowledge of the existence of ion
channels. It was not until the end of the 20th century that,
using x-ray crystallography, the protein structure of ion
channels was discovered for potassium channels (Doyle et al.,
1998), and later for several other types of channels (Jiang
et al., 2002; Jiang, Lee et al., 2003; Miyazawa, Fujiyoshi, and
Unwin, 2003; Payandeh et al., 2011; Hou et al., 2012). This
breakthrough discovery provided the impetus toward under-
standing the molecular basis of various aspects of ion-channel
functions.
Using the atomic structure of the channels, computational

methods such as molecular dynamics were developed that
attempted to provide atomic-level resolution to the function-
ing of ion channels (Tieleman et al., 2001; Beckstein et al.,
2003; Flood et al., 2019) and (as long as the force fields are
chosen appropriately) can describe several aspects of the
phenomenology with high fidelity. In particular, all-atom
molecular dynamics simulations have proved to be effective
in capturing the properties of ion channels. While these
methods have been around for decades, early simulations
were limited to short timescale problems (< 1 ns) and small
size scales. Later advancements in computer technology and
computational tools, as well as the discovery of the crystal
structure of many other ion channels, allowed for simulation
of the ion conductivity in the channel and conformational
change of the molecules on the timescale of several nano-
seconds (Allen et al., 2000; Guidoni, Torre, and Carloni,
2000; Shrivastava and Sansom, 2000; Åqvist and Luzhkov,
2000; Berneche and Roux, 2001; de Groot and Grubmüller,
2001). In recent years, development of the computational
technologies has reached a point where molecular dynamics
simulations, with some approximations such as coarse-
grained atoms, can be used to study the entire ion channel,
including the lipid membrane and solvent, with a time span of
up to milliseconds (Dror et al., 2012; Perilla et al., 2015).
These methods can be applied to problems involving per-
meation and selectivity of ion channels, conformation of the
protein associated with a gating mechanism, and exploration
of drug binding to ion channels. A comprehensive review of
the methods and application of molecular dynamics simu-
lation was given by Flood et al. (2019).
Despite the large number of studies on ion channels using

molecular dynamics simulations, there are several limitations.
First, if the atomic-resolution structure of the ion channel is
not accessible, the molecular dynamics simulation cannot be
performed. Second, the force fields that are designed to
describe the interatomic interaction of the proteins are not
perfect, and the accuracy of the model is limited to the
accuracy of the force field. Third, even if the atomic structure
of the channel is available and the defined force field is

reasonably accurate, execution of molecular dynamics simu-
lations is computationally expensive and several aspects of the
ion-channel modeling remain beyond reach (especially those
that pertain to including larger size scales and realistic
timescales).
Given the success of the Helfrich model for the mechanical

response of membranes and continuum electrostatics in
describing their electrical behavior, the notion of using a
continuum approach to model the ion channel and its
surrounding environment has attracted attention (Maffeo
et al., 2012). The complex protein structure of the channel
and its interaction with surrounding lipid molecules can
influence the selectivity, gating, and transport of ions, and
continuum models necessarily involve simplifications.
For instance, in the context of ion transport, the lipid
membrane and the water are often assumed to be rigid,
and only their dielectric properties are considered to play a
role (Nogueira and Corry, 2019). As a result, the ion channel
is treated as a biomolecule in an ionic solution. Theoretical
models such as Poisson-Boltzmann theory or Poisson-
Nernst-Planck theory (described in Sec. V.A) can be used
to study the ion transport in the channel. Regarding the
gating mechanism, in a limited number of studies the
deformation of the lipid bilayer and the protein structure
and their coupling effects were simulated using a continuum
approach (Reeves et al., 2008; Argudo et al., 2016), which
we describe Sec. V.C. The problem of selectivity is often
treated using molecular dynamics simulations since the
consideration of chemistry is paramount and a mean-field
approach may be inappropriate for handling a small number
of ions in a confined space (Miller, 1999).

A. Theory of ion transport through ion channels

We first examine the considerations pertaining to the
transport of ions through membrane proteins. This ion trans-
port forms the basis for signal transmission in excitable cells
such as neurons. One approach to studying this system is to
model both the protein structure and its neighboring ionic
solution as continuum media.
We denote by Ωm the domain occupied by the macro-

molecules with a bare charge distribution of ρm∶Ωm → R, and
Ωs ¼ R3nΩm is the ambient ionic solution. Assuming that
there are Ns species of ions with concentration Cj and charges
qj, the charge distribution in R3 is given by

ρðxÞ ¼

 ρmðxÞ if x ∈ Ωm;PNs

j qjCjðxÞ if x ∈ Ωs:
ð101Þ

For simplicity, we model both the molecules in the protein
structure and the solution as linear dielectric media with
permittivity given by ϵm and ϵs, respectively. Considering the
charge density in the Maxwell equation (1), we note that the
electric potential ξ∶R3 → R necessarily satisfies

∇ · ½ − ϵðxÞ∇ξðxÞ� ¼ ρðxÞ; ð102Þ

where ϵðxÞ takes the value of ϵm (ϵs) in Ωm (Ωs). The Poisson
equation (102) relates the charge density distribution ρðxÞ to
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the spatial variation of the potential ξðxÞ. However, unlike
previous electrostatics problems, such as those in Sec. IV.A.2,
this equation cannot yet be used to determine the electric field,
since the concentrations Cj are unknowns. For the ionic
solution in Ωs, it is possible to assume that the regions in the
material respond in a mean-field description. In this approach,
the ion species in the ionic solution are represented by
continuum ion concentration instead of discrete ions
(Levitt, 1986; Tieleman et al., 2001; Roux et al., 2004). To
have a closed system, we recall that for noninteracting ions in
the solution the electrochemical potential of the jth ion species
in the mean-field approach is assumed to be uniform through-
out the solution and is represented at any point x using its
entropic contribution and electrostatic contribution as (Kittel
and Kroemer, 1970; Sharp and Honig, 1990)

μjðxÞ ¼ kBT lnCjðxÞ þ qjξðxÞ: ð103Þ

Physically, the quantity −∇μj can be interpreted as the driving
force on the jth ion. Therefore, for stationary equilibrium
states we have −∇μj ≡ 0 on Ωs for all j ¼ 1;…; Ns. In other
words,

CjðxÞ ∝ exp½−qjξðxÞ=kBT� ∀ x ∈ Ωs: ð104Þ

Inserting Eq. (104) into Eq. (102), we obtain the following
general form of the Poisson-Boltzmann (PB) equation:

∇ · ð−ϵm∇ξÞ ¼ ρm on Ωm;

∇ · ð−ϵs∇ξÞ ¼ P
j
C0
jqj exp

�
−qjξ
kBT

�
on Ωs;

ð105Þ

where C0
j is the normalization constant such that the total

number of jth ions is equal to what is in the solution, or the
concentration at infinity if the electric potential at infinity is
chosen to be the ground potential. Across the interface ∂Ωm,
we have the following interfacial conditions:

⟦ξ⟧ ¼ 0; ⟦ − ϵðxÞ∇ξ⟧ · n ¼ 0: ð106Þ

Equations (105) and (106) form a closed system to
determine the electric field and ion distribution. In particular,
for the special case of a 1∶1 electrolyte shown in Fig. 19, the
ionic concentrations in region Ωs can be written as

C� ¼ C0 exp½∓ ecξðrÞ=kBT�;

and hence in Ωs Eq. (105) takes the form of the following
nonlinear Poisson-Boltzman equation (Sharp and Honig,
1990; Gilson et al., 1993; Holst, 1994):

Δξ − κ2ðrÞ sinhðξÞ ¼ 0; ð107Þ

which implies a critical length scale, i.e., the Debye-Hückel
length lD ¼ 1=κ, given by

lD ¼
�
ϵskBT
2e2C̄

�
1=2

; ð108Þ

where C̄ is the number density of the positive or negative ions.
For a system of charged particles in a solution, the screening
of electrostatic interactions is characterized by the Debye-
Hückel length lD. In addition to describing the decayed
potential due to external charges, lD also describes the decay
of charge-charge correlation resulting from thermal fluc-
tuation in the ionic solution (Adar et al., 2019; Buyukdagli
and Podgornik, 2019).
The Poisson-Boltzmann problem (105) is derived for sharp

macromolecule-solvent interfaces. However, the electrostatic
potential is long range and its limitation to discrete domains
does not provide an accurate representation of the real system.
Moreover, it is more convenient for numerical simulation if
the governing equation is regularized with smooth coeffi-
cients, domains, and solutions. An example of such regulari-
zation can be achieved by introducing a characteristic function
for domain Ωm as follows:

SðxÞ ¼
Z
Ωm

Kδðx − yÞdy; KδðxÞ ¼ K0 exp

�
−jxj2
δ2

	
;

where the normalization constant K0 is such thatR
R3 KδðxÞ ¼ 1, and the original problem (105) can be
replaced by

∇ · ð−ϵS∇ξÞ ¼ Sρm þ ð1 − SÞ
X
j

qjCj exp

�
−
qjξ

kBT

	
; ð109Þ

where

ϵS ¼ Sεm þ ð1 − SÞεs: ð110Þ

Equation (109) can be obtained as the Euler-Lagrange
equation of the variational principle (Wei, 2010) as follows:

minfG½ξ�∶ all admissible potential ξg;

where the energy functional G½ξ� is given by

FIG. 19. Different domains in a three-dimensional Debye-
Hückel model for a macromolecule in a 1∶1 electrolyte.
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G½ξ� ¼
Z
R3

�
1
2
½Sεm þ ð1 − SÞεs�j∇ξj2 − Sρmξ

þ ð1 − SÞkBT
X
j

Cj exp

�
−
qjξ

kBT

�	
:

The mean-field approximation resulting in the PB equa-
tion (105) neglects ion correlations and charge fluctuations.
The model is limited mostly to dilute solutions. Since in
modeling ion channels the dilute solution assumption is
reasonable, several studies have used the PB equation to
investigate various aspects related to the physics of ion-
channel transport, such as the change in free energy to bring
a charge from infinity to the channel interior (Moy et al.,
2000; Jogini and Roux, 2005). The mean-field theories
developed for the transport of monovalent charges can be
refined to describe multivalent charge-driven exotic transport
by including the effect of ion-ion correlations using correla-
tion corrected theories (Buyukdagli, 2020). Such an aug-
mented method can be applied to various processes, including
drift-driven polymer translocation through biological and
synthetic nanopores (Buyukdagli and Ala-Nissila, 2017). In
addition, the PB model can be generalized to account for
nonelectrostatic effects through an addition of pertinent terms
to the free energy of the system (Ben-Yaakov et al., 2009). For
instance, an extralinear coupling term between the concen-
tration of ions and the deformation can account for van ’t Hoff
stress (osmotic pressure). The relevant article and textbook
that derived the chemomechanical coupling terms in a
thermodynamically consistent manner were given by Anand
and Govindjee (2020) and Mozaffari, Liu, and Sharma (2022),
respectively. The article in which the osmotic pressure were
derived using the mean-field approach directly was given by
Buyukdagli and Podgornik (2021).
Moreover, the model can be immediately generalized to

address ion transport when the system deviates from its
equilibrium state. Assuming linear responses of ions (i.e.,
the velocity of the ions is given by vj ∝ −∇μj), the ion flux Jj
of the jth species can be written as

Jj ¼ −Djnj∇ μj
kBT

; ð111Þ

where Dj is the diffusivity of the jth ion type. Inserting μj
from Eq. (103) into Eq. (111) and using the conservation of
ions ∂Cj=∂tþ∇ · Jj ¼ 0, we obtain the following Nernst-
Planck equation:

∂Cj

∂t −∇ ·

�
Dj

�
∇Cj þ

qjCj

kBT
∇ξ

�	
¼ 0; ð112Þ

which together with Eq. (105) form the Poisson-Nernst-
Planck (PNP) model framework for analyzing the ion trans-
port in ion channels. In comparison to the PB model, which
describes the equilibrium energetics of the ion channel, the
PNP model is a nonequilibrium approach. Given that the
timescale of the permeation is often of the order of tens of
nanoseconds to milliseconds, the PNPmodel has an advantage
over molecular dynamics simulations as well (Maffeo et al.,
2012). However, the mean-field assumption used in this

method has some disadvantages since it neglects the change
in the dielectric response of ionic solutions and ion-ion
correlations (Maffeo et al., 2012; Levy, Andelman, and
Orland, 2013; Buyukdagli, 2020). For these reasons, the
application of the PNP method to ion channels and the
extent of its validity has been the subject of much debate.
Comprehensive reviews of these methods and their limitations
were given by Roux et al. (2004) and Coalson and
Kurnikova (2005).
To our knowledge, the combined effect of deformation and

ion transport (and the consequent implications for selectivity
and gating) has not yet been addressed. We just outlined the
central equations of transport in a manner that would make it
simple to incorporate deformation and investigate the ram-
ifications of electrodiffusion-mechanical coupling. Limited
experimental evidence was provided by Petrov et al. (1993),
who proposed that flexoelectricity may provide the driving
force for ion transport in certain potassium ion channels. A
detailed model that links these two phenomena together is
absent, however, and would be an interesting future endeavor.
In Sec. V.D, where we discuss the hearing mechanism, we
describe a model that couples the gating probability (albeit not
the transport itself) to flexoelectricity.

B. Intermolecular interactions between biomolecules

Although it is not directly germane to the topic of the
review, for contextual reasons we discuss the interaction of
the biomolecules. This includes interactions of two or more
proteins and proteins with DNA. Interactions between pro-
teins and lipid membranes are discussed in Sec. V.C. The
dominant factor involved in the interaction of two proteins
with nonzero net charge is the Coulomb forces between the
charged amino acid residues. The Coulombic interactions
depend on the solution pH and electrolyte concentration. The
solution pH controls the total charge of the proteins, while the
concentration of the electrolyte governs the effective length of
the Coulombic interactions through the Debye screening
length λD.
Most of the models describing the protein interactions

assume a fixed set of charges on the protein (Carlsson,
Malmsten, and Linse, 2001; Allahyarov et al., 2002), which
is a valid approach if the net charge of the protein is
significant. However, if a protein is neutral (with its isoelectric
point equal to pH), its interaction with another highly charged
protein will lead to an alteration in the charge distribution due
to the distortion of the electrostatic field and a change in the
local ionic environment (Lund and Jönsson, 2005). Thus,
the magnitude of the surface charge and the potential of the
protein can be altered to help the protein adapt to a change in
the chemical environment. The process that originates in
migration of protons between titratable sites is typically
referred to as charge regulation (Pujar and Zydney, 1997;
Lund and Jönsson, 2005; Adžić and Podgornik, 2016). The
charge response resulting from the aforementioned perturba-
tion can be described by the charge capacitance of the
biomolecule, which is the variance of the mean charge.
When a biomolecule is exposed to an external electric field,
the capacitance is in fact a measure of how much charge can
be induced (Lund and Jönsson, 2005).
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For decades, researchers have used the energy minimization
of intermolecular potentials as a tool to analyze biomolecule
interactions. In these models, the total free energy has
contributions from the interaction of the two charge distri-
butions that are affected by both electrolyte concentration and
pH. Since the focus of this review is not MD or MC
simulations, we encourage the interested reader to consult
other reviews that focus on such simulation methods (Schlick
et al., 2011). For the theoretical formulation of this concept,
see Adžić and Podgornik (2016).

C. Lipid-protein interactions and implications
for the gating mechanism

Since the discovery of the structure of voltage-gated ion
channels, several studies have elucidated the principles of
voltage-dependent gating (Aggarwal and MacKinnon, 1996;
Bezanilla, 2000; Lu, Klem, and Ramu, 2002; Long, Campbell,
and MacKinnon, 2005; Batulan, Haddad, and Blunck, 2010;
Kalstrup and Blunck, 2018). The protein structure of a
voltage-gated ion channel involves two distinct domains: a
central pore and the surrounding voltage sensing elements.
For instance, the voltage-gated potassium (Kv) channel con-
tains four subunits of six transmembrane segments; see
Fig. 20. Four of the segments (S1–S4) are the voltage sensors
(VSDs), and two of them (S5 and S6) form the centrally
located pore structure of the channel (Sigworth, 1994;
Bezanilla, 2000). Similar structures exist for other types of
voltage-gated ion channels; see Fig. 20 for an overview of the
protein structure of the superfamily of voltage-gated ion
channels. The pore region is responsible for selectivity and
transport of the ions across the membrane. The gating of the
pore region is facilitated by the motion of the domains of
the voltage sensor. For instance, in Kv channels the amino
acid structure of S4 contains four to eight positive charges
(arginine residue), which are called gating charges (Aggarwal
and MacKinnon, 1996). For the central pore (S5 and S6) to
open or close, the S4 segment needs to move perpendicularly
to the membrane by 15–20 Å positive charges while
deforming the S4-S5 linker. The motion that S4 undergoes
while carrying its charge in the electric field couples the
conformational change of the channel to the transmembrane
potential (Jiang, Ruta et al., 2003). The motif of the four-
domain structure of the voltage sensor is common across
different voltage-gated ion channels (Yellen, 2002). Thus, the
voltage-dependent motion of the VSD is the regulator of the
ion-channel gating.
While the membrane potential is the main stimulus for

gating, other elements can also affect the function of the
channel. These include the amino acid sequence of the voltage
sensor (Li et al., 2014), protein phosphorylation (Vacher and
Trimmer, 2011), intracellular Ca2þ (Gamper, Li, and Shapiro,
2005), and the surrounding lipid molecules (Heginbotham,
Kolmakova-Partensky, and Miller, 1998; Hilgemann, Feng,
and Nasuhoglu, 2001; Hite, Butterwick, and MacKinnon,
2014). In particular, significant work exists on the role of
lipid membranes in a gating mechanism (Gu, Juranka, and
Morris, 2001; Schmidt, Jiang, and MacKinnon, 2006; Hite,
Butterwick, and MacKinnon, 2014; Ahuja et al., 2015).
Experimental observations indicate that in some channels

the role of lipid membrane is so significant that for some
cases (such as the KvAP channel) it becomes completely
inactive in nonphospholipid membranes (Schmidt, Jiang, and
MacKinnon, 2006). Moreover, the lipid composition of the
membrane affects the activation voltage of the channel by
shifting the midactivation voltage to lower or higher values,
depending on the lipid type. For instance, one study showed
that in Kv channels the intracellular phosphatidic acid can shift
the midpoint of the activation curve by 50 mV in a direction
that represents the stable closed conformation of the voltage
sensor (Hite, Butterwick, and MacKinnon, 2014), as shown
in Fig. 21.
The underlying molecular driving forces that regulate the

motion of the voltage sensor and its interaction with the pore
domain as well as the mechanism that lipid molecules
contribute to the gating are not fully understood. Some models
have been suggested to describe the electromechanical cou-
pling that opens the pore as a result of the motion of the S4
domain (Vargas, Bezanilla, and Roux, 2011; Chowdhury and
Chanda, 2012; Hite, Butterwick, and MacKinnon, 2014).
According to these models, first and upon membrane depo-
larization, in each of the domains of the ion channel the S4
charge moves upward within the membrane independently
and applies a force onto the S4-S5 linker. Next, during a

FIG. 20. Protein sequence of the voltage sensor and the pore
domain for various members of the superfamily of voltage-gated
ionchannels.For instance,Nav andCav (alsoshaded inpurple)have
a VSD in each of their four domains. Two-pore channels (TPCs)
(also shaded in blue) have a VSD motif in their two homologous
domains. Transient receptor potential (TRP), Kv, and cyclic
nucleotide-gated (CNG)channelsalsoassembleashomotetramers.
Putative tyrosine-protein phosphatase (TPTE) and Hv1 (also
shaded in black) show the members of the pore domain–lacking
group of proteins. The voltage-sensor segments are shown in light
gray and the pore domains are in dark gray throughout. From
Moreau, Gosselin-Badaroudine, and Chahine, 2014.
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cooperative conformational change of the S4 charge of the
domains, the energy is released to the pore domain, which
results in a widening of the bundle crossing at the intra-
cellular S6 gates (Pathak et al., 2005; Kalstrup and Blunck,
2018). Recently, for several Kv channels, it was shown that
VSD can exert force on the pore domain in an assembly that
makes the S4-S5 linker dispensable. For instance, a molecu-
lar dynamics simulation of HCN channels suggested that the
S4 domain breaks into two subhelix during the downward
movement of the VSD. The lower subhelix of S4 then
replaces the S4-S5 linker (Kasimova et al., 2019). Unlike the
S4 segment, the movement of the S4-S5 linker is not
associated with any charge, and limited dynamic information
is available for the mechanism of its motion (Faure et al.,
2012). On the other hand, the underlying mechanism
of the coupling between anionic lipid molecules and volt-
age-sensor segments is suggested to be either through their
negative charges or through interaction of the end of the
negatively charged molecule with the positively charged
amino acid in the voltage sensor of the channel (Hite,
Butterwick, and MacKinnon, 2014). The mechanism in
which other lipid types such as cholesterol affect gating is
not well understood.
A limited number of continuum studies have tried to

provide insight on the gating mechanism by accounting for
all energy contributions from various elements in the complex

system (Reeves et al., 2008). This free energy comprises the
mechanical energy of the lipid membrane deformation and the
protein conformation and the electrostatic energy associated
with the interaction of the voltage sensor with the ionic
solution and dielectric material of the membrane. The total
free energy of the system is first calculated for various
positions of the voltage sensor. Next the total free-energy
difference ΔGoc between the position of the voltage sensor
that is associated with the open and closed states of the pore is
estimated. Using this free energy, one can describe the
probability of the channel being in the open state using
(Reeves et al., 2008)

Popen ¼
1

1þ expðΔGoc=kBTÞ
. ð113Þ

Evidently, an estimate of the total free-energy difference
between the open and closed states is a reasonable starting
point for the gating mechanism. We first discuss the mechani-
cal energy associated with the deformation of the lipid
membrane. The membrane forces and its intrinsic elastic
properties are shown to affect the gating mechanism
(Calabrese et al., 2002; Lundbæk et al., 2004, 2005;
Morris and Juranka, 2007). It has been suggested that the
coupling of the more flexible lipid membrane with ion-
channel rigid proteins occurs through the deformation of
the lipid membrane in its entirety and can be explained using
the concept of hydrophobic mismatch between the lipid tail
and the hydrophobic domain of the protein (Jensen and
Mouritsen, 2004). The physical underpinning of this defor-
mation can be traced back to the idea of self-assembly of lipid
molecules. In the macroscopic theory, the lipid membrane is
studied as a two-dimensional surface using Helfrich theory
(Helfrich, 1973b). However, when the membrane deformation
in the vicinity of its guest protein is of the same order as the
membrane thickness, a theory based on the elastic energy of
two leaflets is required. Lipid membranes adapt their structure
to the conformational change of the protein through the
stretching, pinching, and variation of their thickness close
to the interface (Goulian et al., 1998). There are several
different models that have provided energetic refinements of
the lipid-protein interaction by including additional factors
such as a higher-order term in the form of the elastic energy
(Argudo et al., 2016). A fairly general form of the free energy
associated with deformation of the two leaflets of the
membrane in contact with a reservoir of lipids with chemical
potential μ may be proposed as (Bitbol, Constantin, and
Fournier, 2012)

ΔG�
mem ¼ �fHH� � f0Hða� − a0ÞH� þ f00HðH�Þ2 þ fKK�

þ 1
2
faða� − a0Þ2 þ αð∇a�Þ2 þ β∇2a�

þ γð∇2a�Þ2 − μ; ð114Þ

where variables associated with the upper and lower leaflets
are denoted by þ and −, H� and K� are the local mean and
Gaussian curvature of the leaflets, a� is the area per lipid of
each leaflet, and fH, f0H, f

00
H, fK , fa, α, β, and γ are related to

constitutive constants of the monolayer. Using the Monge
representation and for the case of small deformation of an

FIG. 21. Different lipid mixtures modifying the channel gating.
(a) Boltzmann function representing the normalized tail currents
in the Kv channel in diphytanoylphosphatidylcholine (DPhPC)
lipid shows a midactivation voltage of Vmid ¼ −71� 1 mV.
(b) Variation of the lipid composition shifts the midactivation
voltage. For DPhPC:1-palmitoyl 2-oleoyl phosphatidic acid
(POPA) (3∶1), the midactivation voltage is Vmid¼−41�2mV.
From Hite, Butterwick, and MacKinnon, 2014.
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infinite flat membrane, we have H� ≃∇2h�=2 and
K� ≃ detð∂i∂jh�Þ; see Fig. 22.
We now assess the contribution of the electrostatic energy

associated with the motion of the voltage sensor in the
dielectric medium. This may be obtained via the Poisson-
Boltzmann equation (105). Once the potential field is evalu-
ated over the domain, the total electrostatic energy can be
calculated using

ΔGelect ¼
Z
Ω
ξðrÞρmðrÞdΩ. ð115Þ

Additional contributions may be added to the energy for an
improved calculation of the gating probability. For instance,
the nonpolar energy associated with isolating large molecules
from water and the corresponding solvent reorganization can
be estimated using a continuum approach (Sitkoff, Ben-Tal,
and Honig, 1996). This approach assumes that the energy
required to stabilize the molecule in the hydrophobic domain
of the membrane is proportional to the solvent accessible
surface area (SASA). Thus, the nonpolar energy can be written
as (Choe, Hecht, and Grabe, 2008)

ΔGnp ¼ aðAmem − AsolÞ þ b; ð116Þ

where Amem and Asol are SASA proteins in the membrane and
solution, respectively.
The equilibrium state of the membrane can be determined

by minimization of the total free energy

ΔGtot ¼ ΔGmem þ ΔGelect þ ΔGnp: ð117Þ

This leads to a free-energy plot with a double minima
indicating the position of the S4 domain in the closed and
open states. The free-energy difference between the two states
is then used in Eq. (113) to calculate the probability of the
channel being in the open state. To our knowledge, no
theoretical model has included electromechanical coupling
effects such as the Maxwell stress and flexoelectricity of the
membrane in the gating mechanism (with the exception of a
model discussed in Sec. V.D). It would be interesting to see

how these coupling effects affect lipid-protein interactions
and, consequently, the gating mechanism.

D. Flexoelectricity and a case study in the implications for
sensory systems: The hearing mechanism

In one manner or the other, electromechanics plays an
important role in adjudicating the response of our sensory
systems (Brownell et al., 2001). In what follows, adhering
closely to a summary given by Deng et al. (2019), we
primarily highlight its relevance for the hearing mechanism.
Like some of the other sensory systems in animals, such as

tactile sensing and vision, the auditory mechanism also offers
an interesting study due to numerous extraordinary features.
In the context of human hearing, the ears are capable of
resolving a frequency difference as small as 1=30th of the span
between two successive piano keys (one semitone). Our
discernible auditory range runs across 3 orders of magnitude
(20 Hz–20 kHz), and we are able to accommodate amplitudes
across 6 orders of magnitude (Martin, Hudspeth, and Jülicher,
2001; Hudspeth, 2014). Arguably one of the most interesting
features pertaining to our hearing mechanism is that the
auditory apparatus is not a passive sensor. To appreciate this,
we remain cognizant of the fact that significant dissipation of
the energy of sound waves occurs as they travel into the fluid-
filled cochlea. Stemming from the groundbreaking work of
Gold (1948) and various more recent works (Choe, Magnasco,
and Hudspeth, 1998; Camalet et al., 2000; Hudspeth, 2005;
Hudspeth, Jülicher, and Martin, 2010; Ó Maoiléidigh and
Hudspeth, 2013), it is now widely accepted that our hearing
apparatus actively supplies energy to mitigate the dissipation
and amplify sound (Nadrowski, Martin, and Jülicher, 2004;
Hudspeth, Jülicher, and Martin, 2010). Specifically, the active
nature of the auditory process is encapsulated by three
extensively discussed attributes and a viable physical model
must (at a minimum) be able explain them: amplification,
compressive nonlinearity, and frequency tuning. The ampli-
fication feature refers to the ability of the ear to amplify the
acoustic signals that it intercepts by several times in magni-
tude (Martin and Hudspeth, 1999, 2001). The compressive
nonlinearity permits exquisite sensitivity to even the faintest
sound while simultaneously possessing the capability of
enduring extremely loud noises (such as those produced
during rock and roll concerts). Although the ear can handle
sound wave amplitudes that span a millionfold, the actual
physical response within the cochlea is compressed into only a
hundredfold (several nanometers to hundreds of nanometers)
(Eguíluz et al., 2000; Martin and Hudspeth, 2001; Kern and
Stoop, 2003; Hudspeth, Jülicher, and Martin, 2010). Thus, for
weak input signals, the cochlea amplifies the sound, while if
the input is too loud, to protect our auditory apparatus the
amplitude is diminished by the active process. Last, the tuning
feature endows the mammalian ears with a sharp frequency
selectivity (Spiegel and Watson, 1984). Figure 23 schemati-
cally outlines some of the key features related to the active
processes of the auditory mechanism for a generic non-
mammalian vertebrate.
The active processes and the various features of the hearing

mechanisms discussed thus far are related to the hair cells in
the cochlea. There are several important differences between

FIG. 22. Parametrization of small deformation of an infinite flat
membrane. The midplane deformation h is the average of the
deformation of the two leaflets hþ and h−. From Bitbol,
Constantin, and Fournier, 2012.
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mammalian and nonmammalian hearing mechanisms, but
those distinctions are beyond the scope of our review. We
are concerned primarily with the role of electromechanics for
the hair cells that leads to the attributes that were just
mentioned. We simply remark that a hair bundle’s motility
is believed to play an important role in the active process of the
cochlea for both mammals with outer hair cells (Chan and
Hudspeth, 2005; Kennedy, Crawford, and Fettiplace, 2005;
Ó Maoiléidigh and Jülicher, 2010) and nonmammals without
them (Hudspeth, 1997; Choe, Magnasco, and Hudspeth,
1998; Tinevez, Jülicher, and Martin, 2007; Fettiplace and
Kim, 2014). In general, the role of hair bundle motility versus
somatic motility has been intensely debated in the literature
(Lagarde et al., 2008; Ashmore et al., 2010; Peng and Ricci,
2011). Our discussion is largely independent of this debate
and is centered primarily around the electromechanical

coupling that leads to hair bundle electromotility and its role
in promoting active processes.
Figures 23(a)–23(d) present the key ingredients high-

lighting, in some sense, a minimal and widely accepted
physical model for the active processes in the hearing
mechanism. While hair bundle motility is considered impor-
tant for the hearing of both mammals and nonmammals, the
figure depicts the cellular structure germane to nonmammals.
Figure 23(a) is the cross section of the receptor organ in the
hearing organ of a generic nonmammalian vertebrate. The
organ comprises hair cells on the basement membrane (BM).
The hair bundle forms the tip of the hair cells and is formed
of (to the order of 100) individual “strands” called stereo-
cilia. Incoming acoustic signals vibrate the BM, and thus the
attached hair cells and hair bundles. The hair bundle is shown
in Fig. 23(b). Each strain has a different height and in the
figure, for simplicity, three stereocilia of the bundle are
shown. Neighboring stereocilia are linked with a threadlike
tip link and mechanosensitive ion-channels are speculated to
be populated around the tip link (Hudspeth, 1989, 2005;
Camalet et al., 2000). Hair bundle deflection leads to a
change in the tip-link tension and thus the opening of the ion-
channel gates and a consequent influx of ions (both Kþ and
Ca2þ ones). Figure 23(c) shows that the vibration of a
stereocilium is actively coupled to the charge flow through
its channel gates (Choe, Magnasco, and Hudspeth, 1998;
Ó Maoiléidigh and Hudspeth, 2013). This active motion of
the stereocilium is able to amplify a vibration with small
amplitude onto another with much larger amplitude. Thus,
the nonlinear electromechanical behavior of the stereocilium
is thought to be the reason for the active motion and the
amplification. The charge flow alters the transmembrane
electric field and, due to the electromechanical coupling, the
shape and thus the motion of the stereocilium is also
impacted. The pioneering work of Choe, Magnasco, and
Hudspeth (1998), Martin and Hudspeth (1999, 2001), Chan
and Hudspeth (2005), and Hudspeth (2005) appears to
indicate that parameters such as ion concentration, mem-
brane bending stiffness (which impacts deflection), and
geometry of the stereocilia are such that dynamical oscil-
lations occur on the verge of Hopf bifurcation; this is
schematically shown in Fig. 23(d). The trajectory of the
stereocilia motion is shown in phase space. Any disturbance
will displace the system from its stationary point. In a
characteristically short time, the radius of oscillation will
always eventually enter a limit cycle. Hudspeth and co-
workers were probably the first to link the active process in
cochlea to Hopf bifurcation (Choe, Magnasco, and
Hudspeth, 1998; Martin and Hudspeth, 1999, 2001; Chan
and Hudspeth, 2005; Hudspeth, 2005).
As one may appreciate following this description,

electromechanical coupling plays a central role in the entire
process. The precise underpinnings of the electromechanical
coupling in stereocilia are still under debate. Some assume
that a mechanism such as piezoelectricity is present (Choe,
Magnasco, and Hudspeth, 1998; Ó Maoiléidigh and Jülicher,
2010; Ó Maoiléidigh and Hudspeth, 2013). It is evident,
however, that stereocilia are not piezoelectric, as they lack the
atomistic structure to act that way: this phenomenon is

FIG. 23. (a)–(d) Key ideas pertaining to the active process and
its importance to the amplification function of the hearing system.
Shown is a cross section of the receptor organ in the hearing
organ of a generic nonmammalian vertebrate. Located on top of
the basement membrane are hair cells whose hair bundles
penetrate into the upper tectorial membrane. The acoustic wave
propagating in the basilar membrane causes the vibration of the
hair cells and the hair bundles. The hair bundle itself consists of
“hairlike” objects called stereocilia. As shown in (b), each
stereocilium is connected to its tallest neighbor by a fine
molecular strand called a tip link. It is believed that on each
hair bundle and around the connection to the tip link are several
mechanosensitive ion channels. When the hair bundle is de-
flected, the increase in tip-link tension causes the opening of the
ion-channel gates, which allows the influx of ions (both Kþ and
Ca2þ ones). The charge flow triggers the active motion of the hair
bundle through a somewhat debated electromechanical coupling
mechanism. As shown in (c), since the charge flow changes the
voltage of the hair bundle, it affects the shape and, consequently,
the motion of each stereocilium. (d) Evidently, nature has evolved
to tune parameters like ion concentration, the membrane’s
bending stiffness, and even the length and spring constant of
the tip links in subtle ways such that the system runs on the verge
of the so-called Hopf bifurcation. Being on the verge of instability
is speculated to be the key mechanism that allows the amplifi-
cation of weak sounds in a specific way and results in several
other critical and idiosyncratic features. From Deng et al., 2019.
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typically restricted to crystalline structures that lack centro-
symmetry (Nowick, 2005).
Flexoelectricity, like electrostriction, is a universal electro-

mechanical coupling mechanism that is present in all dielec-
trics, including biological membranes (Petrov, 2002). There
are strong indications in the work of Brownell, his colleagues,
and others that flexoelectricity is a key element of the hair
bundle’s electromotility (Raphael, Popel, and Brownell, 2000;
Brownell et al., 2001; Breneman, Brownell, and Rabbitt,
2009; Krichen and Sharma, 2016). Brownell and collaborators
advocated for the viewpoint that membrane flexoelectricity is
the source for the electromechanical coupling in hair bundles
(Raphael, Popel, and Brownell, 2000; Brownell et al., 2001;
Breneman, Brownell, and Rabbitt, 2009). Using a theoretical
model, they showed that flexoelectricity is a possible source
for the hair bundle’s fast adaptation (Breneman, Brownell, and
Rabbitt, 2009). Petrov and Sokolov (1986) and Petrov (2002,
2006) argued that flexoelectricity of the nanometer thick
biomembranes is the basic mechanoelectric effect for living
matter. Within a lipid bilayer membrane, lipids are organized
to form a liquid crystal membrane. This membrane exhibits a
strong flexoelectric response due to its limited thickness
(∼4 to 5 nm) and low bending stiffness (∼10–19 J). In a
lipid bilayer membrane, the polarization caused by the direct
flexoelectric effect is proportional to its mean curvature
(Petrov and Sokolov, 1986; Petrov, 2002, 2006). A phenom-
enological expression for this relationship is given by
ps ¼ μH, where ps (in C=m) is the electric polarization
per unit area, H (in 1=m) denotes the membrane’s mean
curvature (defined as the sum of the membrane’s two principal
curvatures), and μ (in coulombs) is the area flexoelectric
coefficient. Note that ps relates to the polarization volume
density P given by Deng, Liu, and Sharma (2014b) and
Ahmadpoor et al. (2013), and that ps ¼ Ph, where h is the
thickness of the membrane. The direction of ps is assumed to
remain normal to the middle plane during the deformation.
Since the coupling between ps and H is two way, a change in
ps or the transmembrane potential also results in a change of
the membrane’s mean curvature (Petrov, 2002) due to the
converse flexoelectric effect. Experimentally, this converse
flexoelectric effect has been observed using an AFM to
measure the deformation of a biomembrane (Mosbacher et al.,
1998; Zhang, Keleshian, and Sachs, 2001) and optical
tweezers to pull membrane tethers and measure their force
production (Brownell, Qian, and Anvari, 2010) in response to
an applied voltage. The membrane tethers had a geometry
similar to that of stereocilia, lacking only their actin cores.
In particular, it was experimentally observed that the length
of stereocilia changes during current flow (Hakizimana
et al., 2012).
Various models in the literature have combined the notion

of ion-channel operation with electromotility to explain the
hearing mechanism. Notable work came from Ó Maoiléidigh
and Jülicher (2010) and Ó Maoiléidigh and Hudspeth (2013),
who created a nonlinear dynamical system model that com-
bines the somatic motility of outer hair cells and the hair
bundle’s motility to illustrate that Hopf bifurcation is respon-
sible for the active process in the cochlea. They proposed an
adaptation spring model that ascribes electromechanical
coupling to hair bundles and that the adaptation spring located

right at the ions’ channel gate is sensitive to Ca2þ cations. The
flow of cations in the channel and its binding to the adaptation
spring is conceived to lead to a decrease in the spring constant.
From a mathematical viewpoint, this is an interesting premise,
although it is unclear what the physical basis of this adaptation
spring is. In particular, they combined the motions of outer
hairs and hair bundles and considered the outer hair cells
piezoelectric. The notion of piezoelectricity of outer hair cells
is somewhat troubling since symmetry requirements for that
phenomenon would appear to prohibit it in outer hair cells.
Breneman, Brownell, and Rabbitt (2009) focused on the

flexoelectricity of stereocilia as the critical electromechanical
coupling mechanism. Flexoelectricity is certainly a plausible
eletromechanical coupling mechanism; however, the model of
Breneman, Brownell, and Rabbitt is linear in terms of hair
bundle dynamics and, as a result, Hopf bifurcation cannot
occur (and thus some of the nonlinear aspects of the hearing
mechanism remain unexplained, although it is capable of
capturing frequency selectivity of the hair bundles).
In a recent work, Deng et al. (2019) constructed a physical

model based on three facts: (1) the rotation of the hair bundle
changes the tension of the tip links; (2) the ion-channel gates
are mechanosensitive, and the change of tip-link force there-
fore impacts the opening state of the gates; and (3) the ions
flowing through the channel gate can significantly change the
voltage of the hair bundle and then alter the shape of the
stereocilia due to the flexoelectric effect. These three ideas
when combined with the Hamilton principle and the equations
of mechanics, thermodynamics, and electrodynamics appear
to yield a nonlinear system of equations that combines several
of the key elements present in the models of Hudspeth, 1989,
1997, 2005, 2014; Choe, Magnasco, and Hudspeth, 1998;
Martin and Hudspeth, 1999, 2001; Eguíluz et al., 2000;
Raphael, Popel, and Brownell, 2000; Brownell et al., 2001;
Chan and Hudspeth, 2005; Breneman, Brownell, and Rabbitt,
2009; Hudspeth, Jülicher, and Martin, 2010; Ó Maoiléidigh
and Hudspeth, 2013). A key attribute of these models is that,
without fitting any artificial parameters (and using only the
thermodynamically defined properties of biomembranes
determined by experiments), the current model shows that
the hair bundle indeed runs at the edge of a Hopf bifurcation
for typical values of the intracellular charge density and the
membrane bending stiffness. The model also indicates that, as
the two previously mentioned parameters deviate from their
normal value, Hopf bifurcation and the active motion of the
system are severely suppressed. In particular, their models find
that flexoelectricity can be a possible cause for the fast
adaptation of the hair bundle’s motility and serve as an
essential ingredient for the occurrence of Hopf bifurcation.
The models quantitatively relate the intracellular cations’
concentration and the membrane’s mechanical properties to
the nonlinear dynamic behavior of the hair bundle.

VI. THE RESPONSE OF CELLS TO MAGNETIC FIELDS

A. Overview

Two considerations primarily prompted the initial interest
in the interaction of living matter and magnetic fields: (i) The
noteworthy ability of nearly 50 species of animals, including
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sharks, the European robin, sea lobsters, and certain insects, to
detect the terrestrial magnetic field (Maeda et al., 2008;
Lohmann, 2010). (ii) The potential adverse health impact
of magnetic fields on humans (Wertheimer and Leeper, 1979;
Adair, 2000; Matthes et al., 2003). Subsequently, the use of
magnetic fields in therapeutic and biomedical contexts has
also received significant attention: transcranial magnetic
stimulations of brain cells for the treatment of diseases like
epilepsy (time-varying magnetic field), and the targeted
delivery of drugs and stem cells (Huang et al., 2010;
Vaněček et al., 2012; Tukmachev et al., 2015), among others
(Corchero and Villaverde, 2009; Krishnan, 2010; Tran and
Webster, 2010; Huang et al., 2012). One of the recurrent and
mystifying themes of magnetobiology has been the absence of
any evidence of so-called magnetoreceptors (unlike electro-
receptors). This has led to many works purporting to under-
stand the precise mechanism by which magnetic fields interact
with biological cells (and arguably the most intensely
researched topic within this category is the ability of magneto-
reception in certain animals). Several reviews exist on the
general aspects of the interaction of magnetic fields and
biology; see Zhadin (2001), Binhi (2002), Binhi and Savin
(2003), Rosen (2003), Engstrom (2004), Dini and Abbro
(2005), Miyakoshi (2005), Saunders (2005), Funk, Monsees,
and Özkucur (2009), Zablotskii et al. (2016), Zhang, Yarema,
and Xu (2017), and Zablotskii, Polyakova, and Dejneka
(2018). As is evident from the aforementioned reviews as
well as the general literature, there are several complex and
controversial issues (Makinistian et al., 2018) pertaining to
magnetic fields in biology. A detailed discussion of all such
aspects is beyond the scope of this review and we limit our
discussion to certain items, as elaborated in the following. An
example of research that we do not dwell on is how low
magnetic fields may impact chemical kinetics; e.g., low static
magnetic fields (to the level of 120 mT) were found to lead to
small but discernible eduction in the peak calcium current
amplitude in cultured GH3 cells (Rosen, 1996). We do not
mention quantum effects at all. Our primary focus is on how
deformation and magnetic fields govern the interaction at the
cellular scale. This is consistent with our thesis that (while
arguably speculative) deformation mediated interaction is one
of the primary mechanisms governing the impact of magnetic
fields on cellular function. In fact, the thesis by authors such as
Rosen (1996) is that it is the deformation-magnetic coupling
that also impacts the chemical kinetics. We reiterate and
caution the reader that our statements on overemphasizing
magnetic-deformation coupling should be viewed as specu-
lative, although we contend that it is well grounded based on
the existing experimental and theoretical literature; see Bryant
and Wolfe (1987), Vlahovska et al. (2009), and Sadik et al.
(2011) as well as our own original research (Krichen, Liu, and
Sharma, 2017). The notion is that magnetic fields are first
translated into mechanical deformation in the cell and cell
membrane, which in turn may trigger an electrical response
via (as one example) tension-activated ion channels. In
general, once magnetic fields are transducted into a mechani-
cal signal, there is a vast literature supporting the latter’s effect
in the context of cellular behavior including phenomena such
as cell proliferation, endocytosis, and many others (Corchero
and Villaverde, 2009; Bhushan, 2017).

As we alluded to in Sec. I, the treatment of magnetic fields
is mathematically analogous to that of electrical fields.
However, this similarity is deceptive when it pertains to the
physical underpinnings of the interaction of biological cells
and magnetic fields. The first point to be noted is that
magnetic fields can be imposed wirelessly, i.e., without
contact. In fact, we are all pervasively subjected to a near-
uniform (but weak) magnetic field of Earth. Our second
observation is that most living matter is transparent to
magnetic fields and there is no attenuation of the field, as
it penetrates biological matter. Unlike electrostatics, there are
no free magnetic “charges” to screen the externally imposed
magnetic field. Finally, and this a rather critical point,
magnetic forces in living matter tend to be weak, in contrast
to the electrical counterparts.
Unlike electric fields, the primary source of magnetic fields

is exogenous. While moving electric charges in our cellular
machinery in a magnetic field would be subjected to a Lorentz
force, this is weak compared to the thermal noise. Zablotskii
et al. (2016) declared that magnetic forces would become
comparable to Coulombic forces only in the vicinity of
magnetic neutron stars that are capable of fields as large as
1 MT. Accordingly, discussions usually center around the
weak magnetic fields due to Earth or those due to electronic
devices, power lines, or any of the sundry sources of
electromagnetic fields that pervade modern technology.
Stronger magnetic fields (such as those greater than 1 T)
are always intentionally imposed in the context of medicine
(e.g., magnetic resonance imaging.
There appear to be five key (broadly interpreted) mecha-

nisms that are operative in the aforementioned interaction
(Fig. 24).26 First, analogous to the electrical Maxwell stress
that has played such a central role in electrical effects, the
Maxwell magnetic stress may play a role. As we show in
Sec. VI.B, the magnetic Maxwell stress is proportional to the
difference between the magnetic susceptibility of the cell and
the ambient environment, i.e., χcell − χambient. Given that most
biological cells are diamagnetic, with susceptibility close to
water (and hence only marginally different than vacuum), the
magnetic Maxwell stress is ordinarily exceedingly small. An
important exception to this may occur if a magnetic material is
present in the cell [Fig. 24(a)]. A central theme of research on
this topic is based on the fact that iron oxide particles
(magnetite) were found in some magnetically sensitive ani-
mals. For example, they were located within cells in the
olfactory lamellae of trout (Walker et al., 1997; Diebel et al.,
2000) and the upper beaks of pigeons (Winklhofer et al.,
2001; Fleissner et al., 2003; Solov’yov and Greiner, 2009;
Treiber et al., 2012, 2013). Since these materials are capable
of being magnetized, the resulting interaction could poten-
tially cause an interaction of the cell and the magnetic field.
Magnetite may be in the form of a single domain particle (and
thus with an intrinsic magnetic moment) or multidomain
where there is no intrinsic moment. In both cases however, an

26There is a distinct parallel between magnetic-deformation
coupling in biological cells and advancements being made in the
materials science of soft magnetic materials; see Kim et al. (2018),
Zhao et al. (2019), and Ze et al. (2020) and references therein.
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argument can be made that on average the cell acts as a
material with magnetic permeability that is not ambient and
thus may lead to a noticeable magnetic Maxwell stress. Most
works distinguish the mechanism based on whether the
material is paramagnetic or ferromagnetic, although the two
can be treated with a similar mathematical framework (which
we present in Sec. VI.B). That said, how this interaction
results in a measurable conversion to an electrical signal is still
a subject of controversy. We revisit this topic in Sec. VI.E,
where we discuss the phenomenon of magnetoreception. Even
in the absence of any magnetic material, another mechanism
that may be operative is what is often termed as anisotropic
diamagnetism in the literature [Fig. 24(b)]. Although it is
usually invoked without reference to the magnetic Maxwell
stress, we show that this effect emerges from the same
framework. The key idea here is that the magnetic suscep-
tibility of a biological cell membrane is anisotropic and its in-

plane component χin differs from its out-of-plane value χn. It
can then be readily shown that the deformation and magnetic
field interact with a factor proportional to χin − χn. Physically,
the deformation proceeds due to the attempt by the lipid
molecules to reorient under the action of an applied magnetic
field such that the vesicle then stretches parallel to the field.
Anisotropic diamagnetism of lipid bilayer membranes and its
consequent translation of magnetic fields into deformation has
been widely studied. This effect is much weaker (Klara et al.,
2016) than the stresses operative in Fig. 24(a), and thus is
relevant only for high static magnetic fields. For nonhomo-
geneous magnetic fields, like dielectrophoresis (discussed in
Sec. III.A), a force proportional to the gradient of the magnetic
field is developed, i.e., B ·∇B [Fig. 24(c)]. A spectacular
example of this effect is the so-called magnetic levitation
illustrated on living matter (Beaugnon and Tournier, 1991;
Valles et al., 1997), where the developed forces are sufficient
to overcome gravity. For this effect to have biological
consequences, high gradients are necessary, and these are
almost certainly possible only artificially, with no prospects of
this occurring under natural conditions that we know of. The
textbook phenomenon of magnetic induction, i.e., the pro-
duction of an electric current due to the temporal variation of
the magnetic field, is shown in Fig. 24(d). Alternatively, this
also occurs when a charged object moves in a magnetic field.
Thus, in principle, this would be an important effect given the
widespread reliance of biological systems on electrical signal-
ing. However, it barely crosses the thermal noise threshold,
except at large magnetic fields and high frequencies, such as in
the therapy related to transcranial magnetic stimulation. The
final, and arguably most exotic, interaction mechanism
involves the effect of magnetic fields on free-radical recombi-
nation rates [Fig. 24(e)]. The interaction energy of molecules
involved in such reactions with moderate magnetic fields is
low compared to thermal noise, and thus its relevance is
somewhat controversial (and still being actively researched).
We consider a detailed discussion of this particular mecha-
nism to be beyond the scope of this review, choosing to invoke
it only in passing; see Hore (2012), Hore and Mouritsen
(2016), and references therein for further information.
The mechanisms in Figs. 24(a) and 24(d) and (to some

extent) Fig. 24(e) is discussed primarily in relation to
magnetoreception. We examine the mechanisms in Figs. 24(b)
and 24(c) separately in Secs. VI.C and VI.D, respectively. We
deemphasize the mechanisms in Figs. 24(d) and 24(e) due to
their lack of connection to deformation, although some
interesting examples exist in connection to them. For example,
Kranjc Brezar et al. (2020) found that by applying a time-
varying magnetic field cell membrane permeability could be
dramatically increased through generation of an electrical
current and essentially cause an electroporation by proxy.
In what follows, we begin in Sec. VI.B by presenting the

mathematical theory that allows one to couple mechanical
deformation and magnetic fields. We show that seemingly
disparate approaches in the literature can be unified and can
emerge from a single framework, and the differences are often
the unstated assumptions made. Specifically, we infer the
basic scaling relations between the forces and stress in the
cells due to the magnetic fields and the physical reasons for
the difference between electrical field–induced stresses.

FIG. 24. Major mechanisms governing the interaction for
magnetic fields with cellular functions. In (a), the presence of
magnetic particles within the cell and their interaction with an
applied magnetic field could conceivably activate sensory mech-
anisms. In addition, on average the cell’s magnetic susceptibility
may become different than the ambient medium, leading to a
noticeable magnetic Maxwell stress. (b) Even in the absence of
any magnetic material, another mechanism that may be operative
is what is often termed as anisotropic diamagnetism. The key idea
here is that the magnetic susceptibility of a biological cell
membrane is anisotropic, and its in-plane component differs
from its out-of-plane value. It can then be readily shown that the
deformation and magnetic field interact with a factor proportional
to χin − χn. Physically, the deformation proceeds due to the
attempt by the lipid molecules to reorient under the action of an
applied magnetic field such that the vesicle then stretches parallel
to the field. (c) For nonhomogeneous magnetic fields, like
dielectrophoresis (discussed in Sec. III.A), a force proportional
to the gradient of the magnetic field is developed, i.e., B ·∇B.
(d) In the phenomenon of magnetic induction, an electric current
is generated due to the temporal variation of the magnetic field.
Alternatively, this also occurs when a charged object moves in a
magnetic field. (e) Magnetic fields can in principle alter chemical
reactions and have been proposed to impact free-radical recom-
bination rates. In some migratory birds, it has been proposed that
light-induced radical pairs in cryptochrome flavoproteins in the
retina lead to an interaction with magnetic fields.
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With the theory at hand, we discuss how cells deform under
magnetic fields due to the phenomenon of anisotropic
diamagnetism in Sec. VI.C and specifically focus on the
unique effects of gradients in a magnetic field in Sec. VI.D.
We finally present in detail the theories related to cellular
mechanisms underpinning the emergent phenomenon mag-
netoreception in animals (Sec. VI.E).

B. Theory of magnetic-field-deformation interaction in cells

In parallel to the previously outlined electroelastic theory,
the magnetoelastic theories can be obtained using a similar
construction. In particular, for a deformable and possibly
magnetizable body described by deformation y∶ΩR → Ω and
magnetization m∶Ω → R3, the total free energy can be
identified as

F ½y;m� ¼ U½y;m� þ Emag½y;m� þWext½y;m�: ð118Þ

We denote by h ¼ he −∇ζ the total spatial magnetic field,
where he∶R3 → R3 is the external magnetic field, i.e., the
magnetic field in space upon removing the body, and the self
magnetic field −∇ζ is determined by the magnetization m via
the Maxwell equation (χΩ ¼ 1 on Ω and 0 otherwise):

∇ · ð−∇ζ þmχΩÞ ¼ 0 in R3;

−∇ζ → 0 as jxj → þ∞:
ð119Þ

The terms in Eq. (118) are identified as (M̃ ¼ Jm is the
magnetization per unit volume as seen from the reference
configuration)

U½y;m� ¼
Z
ΩR

ψð∇xy; M̃Þ;

Emag½y;m� ¼ μ0
2

Z
V
j∇ζj2;

Wext½m� ¼ −μ0
Z
ΩR

he · M̃; ð120Þ

where μ0 is the ambient27 magnetic permeability and ψ ¼
ψð∇xy; M̃Þ is the free-energy density function associated with
the deformable and magnetizable body.
The equilibrium state of the system may be determined by

the principle of minimum free energy:

minfF ½y;m�∶ all admissible y;mg: ð121Þ

For ideal paradiamagnetic materials with deformation-
independent magnetic susceptibility tensor (μ ∈ R3×3

sym is the
magnetic permeability tensor)

χ ¼ 1

μ0
ðμ − μ0IÞ; ð122Þ

where we recall that I is the identity matrix. The free-energy
function can be decomposed into

ψð∇xy; M̃Þ ¼ ψ elastð∇xyÞ þ
μ0
2J

M̃ · χ−1M̃:

Using similar calculations to those in Eq. (25), we can show
that the Euler-Lagrange equations associated with the varia-
tional principle (121) are given by (Liu, 2014b)

∇ · ðσelast þ σMWÞ ¼ 0 onΩ;
χ−1m − h ¼ 0 onΩ;

ð123Þ

where

σelast ¼ 1

J
∂ψelastðFÞ

∂F FT

is the elastic Cauchy stress contributed by the elastic free-
energy function ψelastðFÞ, b ¼ μ0ðhþmÞ ¼ μh is the mag-
netic flux, and

σMW ¼ h ⊗ b −
b · h
2

I ð124Þ

is the Maxwell stress due to the magnetic fields.
The mechanical effects of magnetic fields on an ideal

paradiamagnetic continuum body is entirely captured by the
Maxwell stress (124). Depending on the applications and
features of the external magnetic fields, we may focus on one
of two separate effects: the deformation due to the Maxwell
stress or the overall force and torque on the body (deformable
or not). To explicitly demonstrate how to account for these
two effects, we consider the configuration of a paradiamag-
netic body Ω with magnetic permeability tensor μ ∈ R3×3

sym

embedded in an infinite ambient medium with permeability μ0
under the application of an external field he.
If the externally applied magnetic field he is uniform in

space and the body Ω is a thin film perpendicular or parallel to
the magnetic field, we find that the magnetic field inside the
thin film as determined by Eq. (119) satisfies the following
conditions:

(i) If the film is perpendicular to he,

b ¼ μðhe −∇ζÞ ¼ μ0he.

(ii) If the film is parallel to he,

h ¼ he −∇ζ ¼ he:

Consequently, the Maxwell stress inside the film is determined
as follows:

(i) If the film is perpendicular to he,

σintMW ¼ μ20½ðμ−1heÞ ⊗ he − 1
2
ðhe · μ−1heÞI�.

27μ0 is the permeability of the ambient media not the vacuum,
although, practically speaking, those are not much different in most
biological media. In the case of the biological cell, this would
correspond to the permeability of the extracellular fluid.
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(ii) If the film is parallel to he,

σintMW ¼ he ⊗ ðμheÞ − 1
2
ðhe · μheÞI:

Further, we notice that the magnetic field in the ambient
medium remains just he because of the specific geometry of
the body (thin film),28 and hence the exterior Maxwell stress is
given by

σextMW ¼ μ0he ⊗ he − 1
2
μ0jhej2I:

As indicated by the mechanical balance equation (123), the
actual traction due to the Maxwell stress that drives the
deformation of the film is given by (n is the outward unit
normal on ∂Ω)

tMW ¼ ½σextMW − σintMW�n ¼ σelastn on ∂Ω: ð125Þ

Next we calculate the resultant force and torque on the body
Ω of general shape under the application of a generally
nonuniform external magnetic field he. To this end, we recall
the following multipole expansion of the far field concerning
the solution to Eq. (119) (Jackson, 1962):

4πζ ¼ ðmtot · x̂Þ
r2

þ x̂ ·Qx̂
2r3

þ oð1=r4Þ; ð126Þ

where r ¼ jxj ≫ 1, x̂ ¼ x=r, mtot ¼ R
Ω m is the total mag-

netic dipole, andQ is the associated quadrupole. In the current
configuration, the Maxwell stress on the exterior boundary of
the particle is given by σMW ¼ h ⊗ b − ½ðh · bÞ=2�I, satisfies

∇ · σMW ¼ 0 in R3nΩ;

and can be decomposed into

σMW ¼ σextMW þ σselfMW þ σinterMW;

where the external (self, interaction) Maxwell stress is
given by

σextMW ¼ μ0he ⊗ he −
μ0
2
jhej2I

�
σselfMW ¼ μ0∇ζ ⊗ ∇ζ − μ0

2
j∇ζj2I;

σinterMW ¼ μ0½−he ⊗ ∇ζ −∇ζ ⊗ he þ ðhe ·∇ζÞI�
�
. ð127Þ

Therefore, the resultant force and torque on the force are
given by

Fmag ¼
Z
∂Ωþ

σMWn ¼
Z
∂BR

σinterMWx̂;

Tmag ¼
Z
∂Ωþ

x × ðσMWnÞ ¼
Z
∂BR

x × ðσinterMWx̂Þ; ð128Þ

where BR ⊃ Ω is the ball of radius R. The external magnetic
field he around the particle Ω is typically approximated by a
Taylor expansion,

heðxÞ ≈ he
0 þ ð∇heÞ0x; ð129Þ

where the subscript 0 indicates the evaluation at the center of
the body Ω. Inserting Eq. (129) into Eq. (128) and sending
R → þ∞, taking Eq. (126) we find that, to the leading order,
the resultant force and torque on the particle are given by

Fmag ≈ μ0ð∇heÞT0mtot;

Tmag ≈mtot × μ0he
0: ð130Þ

Although Eq. (130) demonstrates an intuitive and simple
picture of the resultant force and torque due to the magnetic
Maxwell stress, finding the total magnetization mtot on the
body Ω requires the solution to the boundary value problem
formed by Eqs. (132) and (119), which in general is tedious
and depends on the precise shape of Ω. Exceptions include
shapes of ellipsoids (Brown, 1966) and periodic e-inclusions
(Liu, 2008), whose solutions give rise to the important concept
of demagnetization matrix and demagnetization energy in the
theory of micromagnetics (Brown, 1966). If the geometric
effect of the continuum bodyΩ is completely neglected from a
microscopic atomistic viewpoint, we may account for the total
magnetization of the body using the susceptibility tensor:

m ≈ χhe
0 ¼

1

μ0
ðμ − μ0IÞhe

0: ð131Þ

Combining Eqs. (129) and (131), we arrive at the formulas for
resultant force and torque that have been widely used in the
literature.
There are quicker ways to arrive at Eq. (130), such as by

assuming that the particle is infinitesimal and directly
applying a force formula like Eq. (28) for monopoles and
dipoles. The effort here is to show that the approach based
on the Maxwell stress is precise for addressing magneto-
electromechanical coupling, applicable to deformable
bodies, and able to recover the familiar simplified formulas
in the literature.
Comparing Eqs. (123) and (124) with the electroelastic

counterparts (25) and (26), we may conclude that theories for
ideal diaparamagnetic materials (i.e., magnetic permeability is
constant and independent of deformation), piezomagnetic
materials, flexomagnetic materials, and magnetoelastic mem-
branes can be established in parallel. This is indeed the case;
see Liu (2014b) and references therein for details. One caveat
is that the boundary conditions for determining the magnetic
field [see Eq. (119)] and electric field [see Eq. (3)] are
different, resulting in different local fields. Therefore, the
mechanical effects from the Maxwell stress are sometimes
significantly different, even if the geometric configuration and
material properties are similar. For instance, the mechanical
effect on a dielectric film due to metallic electrodes is
compressive, whereas the magnetic Maxwell stress is tensile
for a paramagnetic film immersed in a uniform external
magnetic field; see Eq. (125).28This is fortuitous and will not be the case for a general shape.
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C. Deformation of lipid membranes and biological cells under an
external magnetic field due to anisotropic diamagnetism

To our knowledge, Helfrich (1973b) was the first to
theoretically point out that a spherical biological cell will
deform to an ellipsoid under a sufficiently large magnetic field
(of the order of 104 Oe) due to the fact that the in-plane
magnetic susceptibility of the lipid bilayer differs from its out-
of-plane value [Fig. 24(b)]. The rotation of the lipid molecules
and the consequent stretching of the vesicle are accommo-
dated by the surface tension and bending. In a later work,
Boroske and Helfrich (1978) demonstrated the effect exper-
imentally on cylindrical egg lecithin membranes; see Fig. 25.
Our previously derived equations are precise and incorporate
the case in which the lipid bilayer of a cell displays anisotropic
susceptibility and thus subsumes the model first proposed by
Helfrich and subsequently modified or improved by many
others. The Helfrich model of magnetically deformed cells is
approximate, and we outline the underlying assumptions in
what follows.
Consider a spherical vesicle whose lipid membrane is

endowed with an anisotropic susceptibility tensor (122) sub-
jected to a homogeneous magnetic field. Rather than comput-
ing the developed magnetization by solving the boundary
value problem caused by Eqs. (123) and (119), we may adapt
the approximation (131) from a microscopic atomistic view-
point. Substituting this approximation into the Zeeman energy
(Wext) in Eq. (120), neglecting the energetic contribution of
the self-field (Emag) in Eq. (120), and choosing ψ to be the sum
of the bending energy of the Helfrich-Canham membrane (53)
and the Zeeman magnetic energy, we obtain the following free
energy for the membrane S:

F ½S� ¼
Z
S

1

2
κbðH −H�Þ2 −

tΔμ
2

Z
S
ðhe

0 · nÞ2; ð132Þ

where t is the thickness of the membrane, Δμ ¼ μn − μin ¼
μ0ðχn − χinÞ embodies the anisotropy of the magnetic sus-
ceptibility, and μn (μin) represents the molecular magnetic
permeability in the normal direction of membrane or along the
lipid molecules (in the in-plane direction of the membrane or
the transverse lipid molecules).29 Parametrizing the shape of

the membrane using a spherical coordinate system, the
deformed shape may be described (to the lowest permitted
order) by (Helfrich, 1973b; Iwamoto and Ou-Yang, 2013)
r ¼ ro þ a20Y20ðθ;ϕÞ, where Ylmðθ;ϕÞ is part of the spheri-
cal harmonic series. Minimization of Eq. (132) with respect to
the coefficients of the spherical harmonic series, as well as
further assumptions that the deformation is small, i.e.,
ja20j=ro ≪ 1, and that the surface area remains constant,
provides the solution originally derived as (Helfrich, 1973b)

a20 ¼ −
r3oΔμtðhe

0Þ2
3κbð6 − roH�Þ

: ð133Þ

The equations that we derived in Sec. VI.B [Eqs. (120)] are
more precise and may be used to directly obtain a more
accurate version of Helfrich’s expression in Eq. (133) or
(more practically) an improved approximation. That said, the
assumptions inherent in Eq. (133) are likely to be physically
reasonable except at large fields or magnetic anisotropy.
Equation (133) provides some interesting physical insights.

First, the spontaneous curvature is an important parameter (in
addition to the applied magnetic field) in terms of controlling
the shape evolution of the vesicle. Specifically, the spherical
shape may be considered to be in neutral equilibrium for
H� ¼ 6=ro. A rich phase diagram is expected (especially
when combined with other external parameters such as
pressure) for larger values of the spontaneous curvature.
For the situation in which H� < 6=ro, the deformed shape
is an oblate ellipsoid for Δμ > 0 and is prolate for Δμ < 0.
Notably, it was proposed by Helfrich (1973a) that the
magnetic field–induced deformation ought to be discernible
with a measurement of the change in birefringence of the
suspended vesicles.
After the experiments of Boroske and Helfrich (1978),

other works (Shklyarevskiy et al., 2005; Manyuhina et al.,
2007) verified the key predictions of the previously mentioned
model. In particular, Manyuhina et al. (2007) observed that,
while the model worked well for low values of the magnetic
field (< 1 T), there was a measurable discrepancy at high
fields. They proposed adding a fourth-order curvature energy
term to the bending energy to explain this observation
(Manyuhina et al., 2010). Iwamoto and Ou-Yang (2013)
offered an alternative explanation and proposed augmenting
the model by considering the constraint of constant vesicle
volume and a more careful consideration of the constant area
constraint. With these considerations, their model is also able
to explain the discrepancy between Eq. (133) and experi-
mental observations at higher fields. Besides the attempts by
Manyuhina et al. (2007) and Iwamoto and Ou-Yang (2013),
Helfrich’s basic model was modified by two other works.
Ye and Curcuru (2015) extended the model for a time-varying
magnetic field. Salac (2016) considered the effect of hydro-
dynamics on the vesicle motion and deformation under
magnetic fields.
An interesting consequence of diamagnetism anisotropy–

induced deformation was explored by Liburdy, Tenforde, and
Magin (1986), who found that, at temperatures higher than the
phase transition temperatures, permeability of the membrane
to solute ingress increased due to an applied magnetic field.

FIG. 25. The time evolution of cylindrical egg lecithin vesicles
due to the magnetic anisotropic diamagnetism mechanism. From
Boroske and Helfrich, 1978.

29At times in the biophysical literature the magnetic susceptibility
is not dimensionless, since the anisotropic difference of the per-
meability is not normalized with the ambient medium. Our expres-
sion may therefore appear to be slightly different.
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They explained their results by suggesting that bilayer forms
local ripple structures that lead to instabilities in its elastic
response under the action of the magnetic field. The instability
facilitates permeation of solutes. Their combination of the
domain or ripple structure instability with anisotropic dia-
magnetism–induced mechanism is critical since increased
permeability to solutes was observed at low magnetic fields
of 30 mT, while fields as large as 4 T are needed for the
magnetic and thermal energies to be comparable (for the
anisotropic diamagnetism mechanism). The same mechanism
was used by Liburdy, Tenforde, and Magin (1986) to engineer
drug release by liposome vesicles under the action of a
magnetic field.
The notion of the formation of clusters of lipids in

prephase transition temperatures and diamagnetic anisotropy
has been invoked to explain other phenomenology as well.
In particular, Rosen (1993) argued that the anisotropic
diamagnetism–induced deformation caused by magnetic
fields is responsible for a temperature-dependent impact
on the operation of ion channels. The idea of lipid clusters
or domains is essential in this mechanism for explaining the
effect of otherwise modest magnetic fields (of the the order
of a few hundred millitesla). Specifically, experiments
showed that modest magnetic fields (123 mT) could impact
both the central nervous system and neuromuscular junc-
tions (Rosen and Lubowsky, 1987; Rosen, 1992). As a
comparison, fields as high as 24 T are needed if the Lorentz
force mechanism is used to affect axonal conduction
(Rosen, 1993). In particular, Rosen (2003) detailed several
arguments supporting the thesis that Caþ ion channels are
impacted by the distortion of clusters and lipids in their
vicinity and that levels of a few hundred millitesla suffice
for such a result. We note that this mechanism impacting
ion channels is a competing explanation for the so-called
free-radical-pair mechanism (Tenforde, 1985; Steiner and
Ulrich, 1989). Some limited (but not conclusive) support for
this mechanism was found in the experiments of Hughes
et al. (2005), who tested recombinant mechanosensitive ion
channels in artificial liposomes.
An interesting extension of the work on this topic would

pertain to the direct solution of Eqs. (120) for a vesicle or a cell
without one’s resorting to the approximations. Another
notable possibility is a detailed exploration of the instabilities
of a vesicle under a magnetic field. Dutta and Ray (2007) did
consider the formation of patterns in membranes under an
applied magnetic field.

D. The effect of gradients of magnetic fields

The phenomenon of magnetophoresis, in analogy with
dielectrophoresis, which was described in Sec. III.A, can
potentially interact with biological cells by imposing forces
and torques proportional to the gradient of the applied
magnetic field. In general, gradients of magnetic fields
could potentially cause deformation mechanisms not pos-
sible in a homogeneous field. This topic has received
relatively less attention due to the central preoccupation
of the research into magnetoreception by some animals of
Earth’s magnetic field. Given that Earth’s field is relatively

homogeneous (and weak), gradient effects are unlikely to
play a role in magnetoreception.
Zablotskii et al. (2016) and Zablotskii, Polyakova, and

Dejneka (2018) completed reviews on this topic. One of their
contentions is that some of the contradictory experimental
results may be explained by the fact that the vast literature is
concerned with the absolute value of the applied magnitude
and that the gradients of the field may play a larger role than
what is typically assumed. Specifically, while some claim
strong effects of magnetic fields on cell biology (Dini and
Abbro, 2005; Miyakoshi, 2005; Saunders, 2005; Funk,
Monsees, and Özkucur, 2009; Zhang, Yarema, and Xu,
2017), others claim little to no effect (Binhi and Savin,
2003; Miyakoshi, 2005; Romeo et al., 2016). This apparent
contradiction motivated Zablotskii et al. (2016) and
Zablotskii, Polyakova, and Dejneka (2018) to urge a re-
examination of the importance of gradient effects.
Our formulation in Sec. VI.B may be used to obtain the

often-used expressions for magnetophoresis. The external
magnetic field he around a particle may be approximated
by the following Taylor expansion:

heðxÞ ≈ he
0 þ ð∇heÞ0x; ð134Þ

where the subscript 0 indicates the evaluation at the center of
the particle. Inserting Eq. (129) into Eq. (128) and sending
R → þ∞, using Eq. (126) we find that, to the leading order,
the result force and torque on the particle are given by
Eqs. (130). Further, combining Eqs. (134) and (131), we
arrive at the formulas for the resultant force and torque that
were used by Zablotskii et al. (2016),

Fmag ≈ μ0ð∇heÞT0 ðχhe
0Þ ∼ μ − μ0;

Tmag ≈ μ0he
0 × ðχhe

0Þ ∼ μ − μ0; ð135Þ

where, in this context, the scaling ∼ðμ − μ0Þ is simply the
contrast between the permeability of the cell membrane and
the ambient medium (and not the diamagnetic anisotropy).
There are quicker ways to arrive at Eq. (135), such as by
directly applying a force formula like Eq. (28) for monopoles
and dipoles. The effort here is to show that the approach based
on the Maxwell stress is precise for addressing magneto-
electromechanical coupling, which is applicable to deform-
able bodies, and recovering the familiar simplified formulas in
the literature. Again it is clear that current models that attempt
to take into account magnetophoresis make the previously
noted simplifying assumptions.
A magnetic field must vary across the size scale of a cell for

the gradient effect to be of any impact, and furthermore the
magnetic susceptibility contrast must not be too low. In the
former case, fields of gradients sufficient to have an impact on
cellular function can be produced only artificially. In particu-
lar, it was found (Zablotskii, Polyakova, and Dejneka, 2018)
for some known values of susceptibility contrast that a
gradient of roughly 1 kT=m is necessary to compete with
gravitational force. Notably, through modern technology that
includes micromagnets and nanomagnetic particles, among
others, field gradients as high as 107 T=m may be easily
achievable.
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With reference to Eq. (135), we note that, for a positive
magnetic susceptibility contrast, a cell or vesicle will tend to
migrate toward regions of high field gradient and vice versa
for a negative contrast. This principle was used for forming a
stem cell network by Zablotskii et al. (2013). Biomedical
applications of cell motion in a magnetic field gradient were
reviewed by Binhi and Savin (2003). In general, speculation is
that high magnetic field gradients may impact phenomena
ranging from cytoskeleton remodeling to genetic damage.
Many such studies remain theoretical at this point, although
limited experimental evidence supports some of the claims.

E. The emergent phenomenon of magnetoreception
in some animals

Although often associated with migratory birds, the pres-
ence of magnetoreception is rampant across the animal
kingdom.30 Examples include (Fig. 26) sea turtles, sharks,
bats, lobsters, and many others. Recent work also appears to
indicate the ability of the human brain to sense the terrestrial
magnetic field (Wang et al., 2019). There is ample evidence
suggesting that magnetoreceptive animals use Earth’s mag-
netic field to ascertain both directional and (for a subset of
animals) positional information (Wiltschko and Wiltschko,
1972, 1995; 2003, 2005; Johnsen and Lohmann, 2005a;
Lohmann and Lohmann, 2006). We quote Lohmann,
Lohmann, and Putman (2007) and Lohmann (2010) in saying
that some of the animals essentially have a low-resolution
biological equivalent of the geophysical positioning system. It
is in the emergent ability of magnetoreception in animals
where the collective mechanisms of magnetic interaction
with biological cells (discussed earlier) come together in
the form of a high-functioning biological ability that extends
beyond medical applications. That said, despite significant
attention to research on this topic, a definitive consensus
regarding the mechanisms underpinning magnetoreception is
still absent. Multiple articles have provided a review of this
field (Mouritsen and Ritz, 2005; Wiltschko and Wiltschko,
2005; Begall et al., 2013; Mouritsen, 2018; Lohmann and
Lohmann, 2019). In particular, we cite the article by Lohmann
(2010), who provided an incisive perspective on the open
questions pertaining to this subject.
Unlike electrical field detection by cells, no analogous

magnetoreceptors have been discovered to date. Biological
tissue is practically transparent to magnetic fields and we do
not have much of an option to remove the pervasive geo-
magnetic field, thus compounding the difficulty in locating
magnetoreceptors (Skiles, 1985).
Three competing theories appear to exist that purport to

explain the mechanism of magnetoreception. These are
broadly consistent with the general cell–magnetic field inter-
action mechanism that we already outlined in Sec. VI.A. The
three proposed mechanisms are electromagnetic induction, the
presence of magnetite particles, and “chemical” magneto-
reception (Ritz, Dommer, and Phillips, 2002; Johnsen and
Lohmann, 2005a, 2008; Mouritsen and Ritz, 2005; Lohmann,

2010; Solov’yov, Domratcheva, and Schulten, 2014; Hore and
Mouritsen, 2016).
Lorenzini ampullae cells are highly sensitive electrorecep-

tors typically found in aquatic saltwater fish such as sharks,
skates, and rays (Murray, 1974). They work as highly sensitive
electroreceptors. This germinated the notion of electromag-
netic induction as the underlying mechanism of magneto-
reception. The fish is electrically conductive and, when it
swims in a conductive medium (saltwater) in the presence of a
stationary terrestrial magnetic field, induction will ensue,
leading to an electrical current that could in principle be
detected by the electroreceptors. This requires both the animal
body and the ambient medium to be electrically conductive.
While this is indeed the case for seawater fish, induction
cannot explain magnetosensitive animals such as birds that
navigate in nonconductive air (Kalmijn, 1974; Lohmann and
Johnsen, 2000). In other words, the induction mechanism
might be operative for aquatic fish but is hardly a universal
mechanism that can explain magnetoreception in general.31

FIG. 26. Magnetosensitive animal. Top photo: European robins
have an avian magnetic compass that has been extensively
researched. Bottom photo: sharks are among numerous marine
animals that can perceive Earth’s magnetic field. From Krichen,
Liu, and Sharma, 2017.

30This section closely follows the outline given by Krichen, Liu,
and Sharma (2017).

31On this note, perhaps there is no general and universal
mechanism that can explain magnetoreception in all animals, and
each magnetosensitive animal has its own idiosyncratic mechanism.
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As we mentioned earlier, magnetite [i.e., iron oxide
(Fe3O4)] particles have been discovered in some animals
sensitive to geomagnetism, such as within cells in the
olfactory lamellae of trout (Walker et al., 1997; Diebel et al.,
2000) or in the upper beaks of pigeons (Winklhofer et al.,
2001; Fleissner et al., 2003; Solov’yov and Greiner, 2009;
Treiber et al., 2012, 2013). The premise is that magnetites
align themselves with field triggering sensory structures
(Kirschvink and Gould, 1981; Edmonds, 1996;
Shcherbakov and Winklhofer, 1999; Winklhofer and
Kirschvink, 2010). While neither the presence of ferrous
particles nor their importance can be disputed, it is entirely
unclear how the cells might convert the detected change in
magnetic field into detectable electrical signals.
Finally, the chemical origin of magnetoreception, which is

predicated on how magnetic fields may alter chemical
reactions at the cellular level, has received much attention
(Ritz, Adem, and Schulten, 2000; Johnsen and Lohmann,
2005a, 2008; Wang, Mattern, and Ritz, 2006; Ritz et al., 2009,
2010; Rodgers and Hore, 2009; Solov’yov, Mouritsen, and
Schulten, 2010; Solov’yov, Domratcheva, and Schulten, 2014;
Solov’yov et al., 2014; Hore and Mouritsen, 2016). Indeed,
experimental evidence supports the basic principle of mag-
netic field chemical reactions; see Maeda et al. (2008).
However, the effect has been confirmed only for magnetic
field intensities that far exceed the weak field
of Earth (Johnsen and Lohmann, 2005a). Hore (2012) and

Hore and Mouritsen (2016) provided interesting discussions
on this topic.
We now outline a model that prima facie appears to have

broad applicability, and thus merits consideration.32 The
premise is as follows. If a biological cell were to be a
magnetoelectric material, then magnetoreception could be
explained. Such a material has the property of being able
to convert magnetic fields into electrical signals and vice
versa: this is thus an analogous phenomenon as piezoelec-
tricity. That said, the known natural single phase magneto-
electric materials are not common and are usually exotic
hard crystalline materials. Biological cells lack the symmetry
requirements to be magnetoelectric. Krichen, Liu, and Sharma
(2017) suggested that a biological cell can indeed behave like
a magnetoelectric material under the right conditions. This
concept is described in Fig. 27. The intracellular medium, in
the absence of a magnetic field, is considered to be of
ellipsoidal shape and enclosed by a soft homogeneous
dielectric thin lipid membrane. Consistent with what we
know about biological cells, we assume that there is no
intrinsic magnetoelectric coupling in the cell. Nevertheless, as
discussed in Sec. V, it is well known that cell membranes
possess a cross-membrane resting potential difference due to
actively regulated ion transportation, and there is thus a

FIG. 27. The cell is enclosed by a soft homogeneous dielectric thin membrane of dielectric permittivity εr, and we assume that the
permeability of the membrane and its surroundings are about the same as vacuum (μr ¼ 1). However, the interior of the cell may have a
different magnetic permeability (μr > 1). (a) The state where the cell is perfectly spherical is hypothetical but useful as a reference to
explain the mechanism outlined in the text. (b) As is well known, we consider the cell membrane to possess a preexisting (or resting)
voltage across its thickness. The electrical field due to the resting voltage leads to the so-called electrical Maxwell stress and polarizes
the membrane. We assume that our starting configuration is a nearly spherical ellipsoid, as discussed in the text. The magnetic field is
now “switched on.” The magnetic Maxwell stress causes further deformation and, consequently, alters the preexisting electric field
across the membrane. From Krichen, Liu, and Sharma, 2017.

32We acknowledge being biased in this regard.

Torbati, Mozzafari, Liu, and Sharma: Coupling of mechanical deformation and …

Rev. Mod. Phys., Vol. 94, No. 2, April–June 2022 025003-44



preexisting electric field in the membrane. We assume the
initial configuration of the cell to be ellipsoidal (but nearly
spherical). This preexisting electric field will polarize the
membrane and deform the overall cell via the electrical
Maxwell stress. In other words, owing to the preexisting
resting potential across the membrane, the biological cell is
deformed and exhibits a residual electric field. Now imagine
the action of an external magnetic field on this biological cell.
If the magnetic susceptibility of the interior differs from the
ambient, then there is also a nontrivial magnetic Maxwell
stress (derived in Sec. VI.B), and thus there is further
deformation on top of what the resting potential has already
caused (i.e., the thickness of the membrane will change). The
thinning of the membrane will, due to the constant resting
potential across the membrane, induce changes to the electric
field and polarization of the membrane, and an overall
electrical current (or transportation of ions) in the extracellular
medium. In other words, there will be a change in the
preexisting electric field upon the action of the magnetic
field, which is precisely the magnetoelectric effect. The
strength of this effect depends upon how large the suscep-
tibility or permeability contrast is. Thus, we can imagine some
animals with weak contrast and hence unmeasurable mag-
netoelectric response, and some animals with higher contrast.
This may also explain higher magnetosensitivity in animals
located where magnetite is found.
We now outline the mathematical model itself and what it

predicts. Consider a dielectric elastic cell membrane separat-
ing conducting intracellular and extracellular fluids. To that
end, we introduce an elastic membrane of relative dielectric
permittivity εr and magnetic permeability μr ¼ 1 separating
the cell interior from the outside (electrolytic) media. We
assume that the exterior medium is conductive with relative
magnetic permeability that of vacuum μr ¼ 1. Likewise, the
interior medium of the cell is also assumed to be conductive,
although we leave its magnetic permeability unspecified and
denote it by μr. Let M ⊂ R3 be the 3D membrane body with
midsurface being ∂Ω. In a reference configuration when there
is no magnetic field or potential difference, the membrane
body M0 is a shell of thickness t0 and inner radius R0

(t0 ≪ R0). Let y∶M0 → M be the deformation of the
membrane with a reference midsurface ∂Ω0 and a deformed
midsurface ∂Ω. We denote by p∶M → R3 and m∶Ω → R3,
respectively, the polarization in the membrane and the
magnetization in the intracellular medium in the deformed
configuration that describes the thermodynamic state of the
system. Since the central idea is related to the nonlinear
deformation state, the distinction between the reference and
the deformed configuration must be carefully maintained.
Constitutively, we assume linear dielectric behavior in the
membrane (of relative permittivity εr) and magnetic behavior
in the intracellular fluid (of relative permeability μr)

33:

e ¼ p
ε0ðεr − 1Þ in M; h ¼ m

μr − 1
in Ω; ð136Þ

where e (h) denotes the spatial electric field (magnetic field)
and ε0 (μ0) denotes the vacuum electric permittivity (mag-
netic permeability). We are interested in how the external
magnetic field he influences the equilibrium state of the
system, and, particularly the electric field across the cell
membrane.
Under the application of a cross-membrane resting potential

V0 and an external magnetic field he, the total free energy of
the system can be identified as

F ½y;p;m;V0;he� ¼ U½y;p;m� þ Eelect½y;p�
þ Emag½y;m� þWext½y;p;m;he�; ð137Þ

where U is the energy associated with a polarizable and
magnetizable body,

U½y;p;m� ¼ Uelast½y� þ
Z
M

jpj2
2ε0ðεr − 1Þ þ

Z
Ω

μ0
2ðμr − 1Þ jmj2;

ð138Þ

and Wext is the external work done to the system by boundary
devices to maintain the imposed boundary conditions:

Wext½y;p;m;he� ¼
Z
∂M

φð−ε0∇φþ pÞ · n −
Z
R3

μ0he ·m:

ð139Þ

In Eq. (138) Uelast is the elastic energy arising from the
deformation of the elastic membrane and Eelect (Emag) is the
energy associated with the electric (magnetic) field. For
simplicity, we make the assumption that the intracellular
and extracellular media are fluids whose elasticity is negli-
gible. The energy penalty associated with the thickness
deformation and the stretching is used to describe the elastic
behavior of the membrane:

Uelast½y� ¼
Z
∂Ω

�
κt
2

�
t
t0
− 1

�
2
	
þ κs

2

ðj∂Ωj − j∂Ω0jÞ2
j∂Ω0j

; ð140Þ

where ∂Ω ¼ yð∂Ω0Þ, κt is the modulus associated with
thickness changes in units of energy per unit area, κs is the
stretch modulus, t0 is the thickness in the reference configu-
ration, and t is the thickness of the deformed membrane. The
change in the bending energy is negligible in this context and
hence ignored. In addition, since the biological membrane is
essentially a fluid membrane, we assume that it is effectively
incompressible. Therefore, we have

I1½y� ¼
Z
∂Ω

t −
Z
∂Ω0

t0 ¼ 0: ð141Þ

Furthermore, we assume that the cell volume remains constant
during the deformation, and hence we have

I2½y� ¼ ΔΩ ¼ 0: ð142Þ

In addition, the electric contribution to the free energy is
identified as (Liu, 2013a, 2014a)

33The key nonlinearities that must be accounted for are geometric
in nature and not constitutive.
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Eelect½y;p;V0� þ
Z
M

jpj2
2ε0ðεr − 1Þ

þ
Z
∂M

φð−ε0∇φþ pÞ · n; ð143Þ

where Eelect is given by Eq. (6) and the electric potential
φ∶M → R is determined as follows by the Maxwell equation:

∇ · ð−ε0∇φþ pÞ ¼ 0 in M; φjinterior ¼ 0;

φjexterior ¼ V0:
ð144Þ

Finally, using the Landau’s theory of micromagnetics, the
magnetic contribution to the free energy can be written as

Emag½y;m;he� þ
Z
Ω

μ0
2ðμr − 1Þ jmj2 −

Z
R3

½μ0he ·m�; ð145Þ

where Emag½y;m;he� ¼ R
R3ðμ0=2Þj∇ξj2 and the self magnetic

potential ξ∶R3 → R must also satisfy the Maxwell equation:

∇ · ð−∇ξþmχΩÞ ¼ 0 in R3;

ξ → 0 as jxj → þ∞.
ð146Þ

In Eq. (146) χΩ ¼ 1 on Ω and 0 otherwise. The source term
mχΩ in Eq. (146) reflects the fact that only the intracellular
medium is magnetizable because of the enclosed nanoscale
magnetic proteins or particles. In conclusion, the principle of
minimum free energy asserts that the equilibrium state of the
system is such that

minfF ½y;p;m;V0;he�∶ðy;p;mÞ ∈ Sg; ð147Þ

where S represents the admissible space of the state varia-
bles ðy;p;mÞ.
A change of external magnetic field he does induce a

change of polarization p in the membrane due to a nonlinear
coupling via mechanical deformation, as can be discerned
using the solution to the minimization problem in Eq. (147). In
practice, this must be done numerically.
The main result is shown in Fig. 28. The change in electrical

field of the cell when subjected to a magnetic field is plotted as
a function of the cell’s interior relative magnetic permeability.
The key insight is that even if the relative magnetic per-
meability of the biological cell is only slightly greater than
vacuum, the cell behaves like a magnetoelectric material and
can convert magnetic signals into electrical ones within the
detectable range of biological cells. Thus, the magnetorecep-
tion ability is universal but perhaps exceedingly weak on some
animals, including humans.
A relative permeability of the cell interior that is greater

than that of vacuum may be explained by the presence of
magnetites (iron oxides) within the cytoplasm or any number
of other reasons. The key point is that, as long as the relative
magnetic permeability of the biological cell is larger than that
of vacuum, the cell behaves like a magnetoelectric material,
and its ability to convert magnetic signals into electrical ones
depends on both the precise value of the permeability and the
strength of the applied field. The proposed aforementioned

mechanism is complementary with various experimental
works (Walker et al., 1997; Diebel et al., 2000; Winklhofer
et al., 2001; Fleissner et al., 2003) that detected magnetites in
the cells of certain animals. Just a small amount of magnetites
will lead to an appreciable permeability contrast.
The described model is able to explain the “magnetic

compass” ability, as well the “inclination compass” ability
allowing them to be sensitive to the field’s axis but not to its
polarity (Wiltschko and Wiltschko, 1972). A small subset of
magnetosensitive animals (including lobsters, salamanders,
and mole rats) can also detect the polarity of Earth’s magnetic
field and thus distinguish between north and south (Johnsen
and Lohmann, 2008). The model cannot explain this ability or
further developments and they remain open questions.

VII. CONCLUSIONS AND OUTLOOK

Against a backdrop of what we hope is a unifying
theoretical framework, we have provided a perspective on
both the ubiquity and the importance of coupling mechanical
deformation with electromagnetism in the context of biologi-
cal cells. There are many implications of this coupling, some
that we have reviewed and others that arguably remain to be
discovered or investigated. We have attempted to build a
connection between seemingly disparate subtopics that are
often treated with models that superficially seem different. As
an example, we have showed that, using the notion of
electrostatic Maxwell stress, both electroporation and dielec-
trophoresis can be treated within a single setting.
In what follows, we remark on some of the key issues that

remain relatively unexplored, and thus could potentially be
avenues for future work. We emphasize that our viewpoint is
unabashedly from the vantage point of theoretical physics,
as opposed to biology, but hope that our perspective has

FIG. 28. Variation of the electric field within a cell membrane
with respect to the relative permeability for different magnitudes
of Earth’s magnetic field. To make quantitative estimates, we
consider a cell subjected to a magnetic field and plot the ensuing
change in the electrical field (ΔE) as a function of the magnetic
permeability of its interior. For example, a neuron can sense a
variation in the electric field as low as 0.1 V=m: the dashed line
shows this threshold. These calculations are done under the
assumption that the thickness across the membrane remains
uniform. From Krichen, Liu, and Sharma, 2017.
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implications for a better understanding of significant biologi-
cal phenomena from the perspective of a cell.

(1) We have presented a unifying electromechanics and
magnetomechanics framework in Sec. II and VI,
respectively. Although we alluded to dissipative ef-
fects in Sec. II, a comprehensive framework that
incorporates electrodynamics, both electrical and
mechanical dissipation (such as membrane viscous
effects), and ion transport is missing. In principle, such
a framework would not be difficult to establish and
literature that highlights one or more of these aspects
could be combined together to achieve this. The work
of Arroyo and DeSimone (2009) and Arroyo et al.
(2018) may be useful for incorporating dissipation.
Computational methods go hand in hand with the
development of mathematical theories. While signifi-
cant advancements have been made in the solids area
in terms of using multiscale methods [see Yang and
Dayal (2011) and Marshall and Dayal (2014)] for
coupled electrical and mechanical problems, similar
efforts in the context of biological cells would be a
welcome development.

(2) The upscaling of electromechanical or magnetome-
chanical coupling from the level of a cell to the tissue
level appears to be a daunting challenge. In the context
of coupled mechanical and electromagnetic phenom-
ena, this issue remains unresolved.

(3) A significant literature exists on developing theories of
biological membranes from a dimensional reduction
of three-dimensional solid or liquid crystal theories;
see Friesecke, James, and Müller (2006), Deseri,
Piccioni, and Zurlo (2008), Steigmann (2009, 2013,
2018), Edmiston and Steigmann (2011), Ogden and
Steigmann (2011), Barham, Steigmann, and White
(2012), and Roohbakhshan, Duong, and Sauer (2016).
This line of work seems far from being exhausted,
however. Specifically, electromagnetomechanical the-
ories of cells that account for the various electro-
mechanical couplings, dissipative effects, presence of
proteins, and active “motors” would seem to be a
promising future direction. In a somewhat reverse
direction, there also appear to be some effort in
extracting usually mechanical theories of membranes
from microscopic models; see Seguin and Fried
(2014). We are unaware of any similar efforts to
obtain electromechanical coupling as viewed from a
continuum viewpoint by microscopic considerations.
Arguably, approaches such as those outlined by Gra-
singer and Dayal (2020) could be adapted for such an
endeavor.

(4) An example of the advantage of unifying the treatment
of different biological phenomena using a single
theory pertains to the problem of electrofusion of
biological cells. It has often been suggested in the
literature that electrofusion of the cells requires differ-
ent steps (Hu et al., 2013). First, it is necessary to
expose the cells and vesicles to a nonuniform electric
field to sort the cell and bring those into proximity
using the resulting kinetic effects (dielectrophoresis
and electrorotation). Next, upon application of a dc

field, electrodeformation and electroporation of the cell
occcur.Finally, thecells that areporatedandalsoclose to
each other begin to fuse at the pore site, undergo a
neckingmechanism, and transform into a single body. It
is possible to describe the complete process of the
electrofusion using a unified framework, as suggested
in this review. While mechanical theories of electro-
fusion abound, to our knowledge the use of a unified
framework to describe electrofusion has not occurred.

(5) The study of ion channels in the literature often
involves three main topics: ion transport, the gating
mechanism, and selectivity (Maffeo et al.,
2012).While the effect of mechanical deformation
on the operation of mechanosensitive ion channels
is extensive, the coupling of ion transport, deforma-
tion, and electrostatics in the behavior of voltage-gated
channels is conspicuously absent. Coupling effects
such as flexoelectricity (Ahmadpoor and Sharma,
2015) and Maxwell stress can potentially affect the
function of ion channels. Petrov et al. (1993)) pro-
vided plausible experimental evidence that flexoelec-
tricity likely couples with ion transport, but a clear
model is still missing. We highlight the experimental
evidence supporting the idea that morphological
change of the cell membrane and biomolecule as a
result of interaction with the electric field can play a
significant role in the main aspects of ion-channel
function. From a computational perspective, the con-
tinuum models that study such conformational
changes are limited (Reeves et al., 2008). The bio-
logical implications for sensory mechanisms seem to
be rich from such a modeling effort.

(6) An electromechanical-diffusion model that can simul-
taneously couple ion transport, the gating mechanism,
and selectivity is still missing. This arguably requires a
curation of various insights from experiments and
microscopic models, such as atomistics, and then the
formulation of a minimal model that ties everything
together.

(7) In our review, we have not discussed the role of
temperature in the context of the coupling of deforma-
tion and electromagnetic fields at the cellular level. The
literature is somewhat sparse in this regard, although we
do believe there are some avenues for future research
pertaining to this topic. In a recent work (Darbaniyan
et al., 2021), it was shown that a biological cell is an
electret and that (when temperature is considered) the
cell behaves like a weak pyroelectric material; i.e.,
small changes in temperature can be converted into
electricity. There are some intriguing implications for
this observation. Pit-bearing snakes (such as pythons)
are able to see their prey in total darkness, an ability that
emanates from being able to detect infrared radiation of
objects that are warmer than the ambient medium to
form a thermal image. Darbaniyan et al. (2021) argued
that the mechanism underpinning the conversion of
infrared heat to electrical signals is related to the
pyroelectric effect of the cells (in addition to other
aspects of the snake physiology, like the morphology of
the pit organ).
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(8) A definitive explanation for magnetoreception in
animals is still absent. Work, much of which we have
reviewed, has been conducted on this topic. Perhaps
there is no universal mechanism that can be used to
explain magnetoreception, and different sets of mag-
netosensitive animals have their own idiosyncratic
mechanisms. We have reviewed a model that explains
much of the phenomenology (Krichen, Liu, and
Sharma, 2017), but not all of it (such as the ability
of some animals to distinguish between north and
south and not just the direction). Furthermore, there is
no experimental evidence of such a universal model.
The discovery of magnetoreceptors would ideally
provide an explanation, but this has remained elusive.
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Sens, Pierre, and Hervé Isambert, 2002, “Undulation Instability of
Lipid Membranes under an Electric Field,” Phys. Rev. Lett. 88,
128102.

Shahinpoor, M., 1999, “Ionic polymer-metal composites (IPMC) as
biomimetic sensors and actuators,” in Field Responsive Polymers:
Electroresponsive, Photoresponsive, and Responsive Polymers in
Chemistry and Biology, ACS Symposium Series Vol. 726, edited by
Ishrat M. Khan and Joycelyn S. Harrison (American Chemical
Society, Washington, DC), pp. 25–50.

Shamoon, D., J. Dermol-Černe, L. Rems, M Reberšek, T. Kotnik, S.
Lasquellec, C. Brosseau, and D Miklavčič, 2019, “Assessing the
electro-deformation and electro-poration of biological cells using a
three-dimensional finite element model,” Appl. Phys. Lett. 114,
063701.

Sharma, Amarnath, and Uma S. Sharma, 1997, “Liposomes in drug
delivery: Progress and limitations,” Int. J. Pharm. 154, 123–140.

Sharp, Kim A., and Barry Honig, 1990, “Electrostatic interactions in
macromolecules: Theory and applications,” Annu. Rev. Biophys.
Biophys. Chem. 19, 301–332.

Shcherbakov, V. P., and M. Winklhofer, 1999, “The osmotic mag-
netometer: A new model for a magnetite-based magnetoreceptor in
animals,” Eur. Biophys. J. 28, 380–392.

Shillcock, Julian C., and Reinhard Lipowsky, 2005, “Tension-
induced fusion of bilayer membranes and vesicles,” Nat. Mater.
4, 225–228.

Shillcock, Julian C., and Reinhard Lipowsky, 2006, “The computa-
tional route from bilayer membranes to vesicle fusion,” J. Phys.
Condens. Matter 18, S1191.

Shklyarevskiy, Igor O., et al., 2005, “Magnetic deformation of self-
assembled sexithiophene spherical nanocapsules,” J. Am. Chem.
Soc. 127, 1112–1113.

Shrivastava, Indira H., and Mark S. P. Sansom, 2000, “Simulations of
ion permeation through a potassium channel: Molecular dynamics
of KcsA in a phospholipid bilayer,” Biophys. J. 78, 557–570.

Sigworth, Fred J., 1994, “Voltage gating of ion channels,” Q. Rev.
Biophys. 27, 1–40.

Torbati, Mozzafari, Liu, and Sharma: Coupling of mechanical deformation and …

Rev. Mod. Phys., Vol. 94, No. 2, April–June 2022 025003-58

https://doi.org/10.1002/elps.200410298
https://doi.org/10.2174/1566523216666160331130040
https://doi.org/10.1152/ajpcell.1992.262.6.C1418
https://doi.org/10.1152/ajpcell.1992.262.6.C1418
https://doi.org/10.3109/00207459308987217
https://doi.org/10.3109/00207459308987217
https://doi.org/10.1016/0005-2736(96)00053-3
https://doi.org/10.1016/0005-2736(96)00053-3
https://doi.org/10.1385/CBB:39:2:163
https://doi.org/10.1385/CBB:39:2:163
https://doi.org/10.1016/0014-4886(87)90308-6
https://doi.org/10.1016/0014-4886(87)90308-6
https://doi.org/10.1002/btpr.2371
https://doi.org/10.1017/S0033583504003968
https://doi.org/10.1209/epl/i2003-10276-x
https://doi.org/10.1038/s41598-018-33912-y
https://doi.org/10.1038/s41598-018-33912-y
https://doi.org/10.1016/j.bbamem.2019.183089
https://doi.org/10.1557/mrs2009.178
https://doi.org/10.1557/mrs2009.178
https://doi.org/10.1103/PhysRevE.83.066316
https://arXiv.org/abs/1608.05587
https://doi.org/10.1039/C3SM52870G
https://doi.org/10.1186/s13395-017-0149-3
https://doi.org/10.1186/s13395-017-0149-3
https://doi.org/10.1088/0960-1317/16/11/010
https://doi.org/10.1016/j.pbiomolbio.2004.09.001
https://doi.org/10.1017/S0033583510000284
https://doi.org/10.1038/nature05416
https://doi.org/10.1073/pnas.0810187105
https://doi.org/10.1073/pnas.0810187105
https://doi.org/10.1016/S0304-3886(98)00055-2
https://doi.org/10.1038/s41598-018-21993-8
https://doi.org/10.1038/s41598-018-21993-8
https://doi.org/10.1016/S0925-4439(99)00108-8
https://doi.org/10.1016/S0925-4439(99)00108-8
https://doi.org/10.1007/s00285-013-0647-9
https://doi.org/10.1007/s00285-013-0647-9
https://doi.org/10.1093/oxfordjournals.pcp.a075944
https://doi.org/10.1073/pnas.1517437113
https://doi.org/10.1073/pnas.1517437113
https://doi.org/10.1103/PhysRevLett.88.128102
https://doi.org/10.1103/PhysRevLett.88.128102
https://doi.org/10.1063/1.5079292
https://doi.org/10.1063/1.5079292
https://doi.org/10.1016/S0378-5173(97)00135-X
https://doi.org/10.1146/annurev.bb.19.060190.001505
https://doi.org/10.1146/annurev.bb.19.060190.001505
https://doi.org/10.1007/s002490050222
https://doi.org/10.1038/nmat1333
https://doi.org/10.1038/nmat1333
https://doi.org/10.1088/0953-8984/18/28/S06
https://doi.org/10.1088/0953-8984/18/28/S06
https://doi.org/10.1021/ja0431096
https://doi.org/10.1021/ja0431096
https://doi.org/10.1016/S0006-3495(00)76616-1
https://doi.org/10.1017/S0033583500002894
https://doi.org/10.1017/S0033583500002894


Singh, Pushpendra, and Nadine Aubry, 2007, “Transport and
deformation of droplets in a microdevice using dielectrophoresis,”
Electrophoresis 28, 644–657.

Sitkoff, Doree, Nir Ben-Tal, and Barry Honig, 1996, “Calculation of
alkane to water solvation free energies using continuum solvent
models,” J. Phys. Chem. 100, 2744–2752.

Skiles, D. D., 1985, Magnetite Biomineralization and Magneto-
reception in Organisms (Springer New York), pp. 43–102.

Smaby, Janice M., Jean M. Muderhwa, and Howard L. Brockman,
1994, “Is lateral phase separation required for fatty acid to stimulate
lipases in a phosphatidylcholine interface?,” Biochemistry 33,
1915–1922.

Smith, Kyle C., John C. Neu, and Wanda Krassowska, 2004, “Model
of creation and evolution of stable electropores for DNA delivery,”
Biophys. J. 86, 2813–2826.

Smith, Kyle Christopher, 2011, “A unified model of electroporation
and molecular transport,” Ph.D. thesis (Massachusetts Institute of
Technology).

Solovev, Alexander A., Samuel Sanchez, Martin Pumera, Yong Feng
Mei, and Oliver G. Schmidt, 2010, “Magnetic control of tubular
catalytic microbots for the transport, assembly, and delivery of
micro-objects,” Adv. Funct. Mater. 20, 2430–2435.

Solov’yov, I. A., T. Domratcheva, and K. Schulten, 2014, “Separa-
tion of photo-induced radical pair in cryptochrome to a functionally
critical distance,” Sci. Rep. 4, 3845.

Solov’yov, I. A., and W. Greiner, 2009, “Micromagnetic insight into
a magnetoreceptor in birds: Existence of magnetic field amplifiers
in the beak,” Phys. Rev. E 80, 041919.

Solov’yov, I. A., P. J. Hore, T. Ritz, and K. Schulten, 2014, “A
chemical compass for bird navigation,” in Quantum Effects in
Biology, edited by Masoud Mohseni, Yasser Omar, Gregory S.
Engel, and Martin B. Plenio (Cambridge University Press,
Cambridge, England), pp. 218–236).

Solov’yov, I. A., H. Mouritsen, and K. Schulten, 2010, “Acuity of a
cryptochrome and vision based magnetoreception system in birds,”
Biophys. J. 99, 40–49.

Solov’yov, Ilia A., and Walter Greiner, 2009, “Micromagnetic insight
into a magnetoreceptor in birds: Existence of magnetic field
amplifiers in the beak,” Phys. Rev. E 80, 041919.

Son, Reuben S., Thiruvallur R. Gowrishankar, Kyle C. Smith, and
James C. Weaver, 2016, “Modeling a conventional electroporation
pulse train: Decreased pore number, cumulative calcium transport
and an example of electrosensitization,” IEEE Trans. Biomed. Eng.
63, 571–580.

Spector, A. A., N. Deo, K. Grosh, J. T. Ratnanather, and R. M.
Raphael, 2006, “Electromechanical models of the outer hair cell
composite membrane,” J. Membr. Biol. 209, 135–152.

Spiegel, Murray F., and Charles S. Watson, 1984, “Performance on
frequency-discrimination tasks by musicians and nonmusicians,”
J. Acoust. Soc. Am. 76, 1690–1695.

Stampfli, R., 1958, “Reversible electrical breakdown of the excitable
membrane of a Ranvier node,” An. Acad. Bras. Cienc. 30, 57–61,
https://eurekamag.com/research/025/402/025402612.php.

Steigmann, David, 1999, “Fluid films with curvature elasticity,”
Arch. Ration. Mech. Anal. 150, 127–152.

Steigmann, David J., 2009, “A concise derivation of membrane
theory from three-dimensional nonlinear elasticity,” J. Elast. 97,
97–101.

Steigmann, David J., 2013, “A well-posed finite-strain model for
thin elastic sheets with bending stiffness,” Math. Mech. Solids 18,
103–112.

Steigmann, David J., 2018, “Mechanics and physics of lipid
bilayers,” in The Role of Mechanics in the Study of Lipid Bilayers,

CISM International Centre for Mechanical Sciences Vol. 577,
edited by David J. Steigmann (Springer, New York), pp. 1–61.

Steinchen, Annie, Dominique Gallez, and Albert Sanfeld, 1982, “A
viscoelastic approach to the hydrodynamic stability of mem-
branes,” J. Colloid Interface Sci. 85, 5–15.

Steiner, Ulrich E., and Thomas Ulrich, 1989, “Magnetic field effects in
chemical kinetics and related phenomena,” Chem. Rev. 89, 51–147.

Stracke, R., K. J. Böhm, L. Wollweber, J. A. Tuszynski, and E.
Unger, 2002, “Analysis of the migration behaviour of single
microtubules in electric fields,” Biochem. Biophys. Res. Commun.
293, 602–609.

Stratton, Julius A., 1941, Electromagnetic Theory (McGraw-Hill,
New York).

Stratton, Julius Adams, 2007, Electromagnetic Theory, Vol. 33 (John
Wiley & Sons, New York).

Strömberg, Anette, Frida Ryttsén, Daniel T. Chiu, Max Davidson,
Peter S. Eriksson, Clyde F. Wilson, Owe Orwar, and Richard N.
Zare, 2000, “Manipulating the genetic identity and biochemical
surface properties of individual cells with electric-field-induced
fusion,” Proc. Natl. Acad. Sci. U.S.A. 97, 7–11.

Sukharev, S. I., V. A. Klenchin, S. M. Serov, L. V. Chernomordik, and
Yu. A. Chizmadzhev, 1992, “Electroporation and electrophoretic
DNA transfer into cells: The effect of DNA interaction with
electropores,” Biophys. J. 63, 1320–1327.

Sukhorukov, Vladimir L., Gustav Meedt, Markus Kürschner, and
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Christopher P Cousté, Jacob N. H. Abrahams, Sam E. Bernstein,
Ayumu Matani, Shinsuke Shimojo, and Joseph L. Kirschvink,
2019, “Transduction of the geomagnetic field as evidenced from
alpha-band activity in the human brain,” eNeuro 6, PMC6494972.

Wang, K., E. Mattern, and T. Ritz, 2006, “On the use of magnets to
disrupt the physiological compass of birds,” Phys. Biol. 3, 220–231.

Wang, X.-B., Y. Huang, F. F. Becker, and P. R. C. Gascoyne, 1994,
“A unified theory of dielectrophoresis and travelling wave dielec-
trophoresis,” J. Phys. D 27, 1571.

Wang, Xujing, Xiao-Bo Wang, and Peter R. C. Gascoyne, 1997,
“General expressions for dielectrophoretic force and electrorota-
tional torque derived using the Maxwell stress tensor method,” J.
Electrost. 39, 277–295.

Weaver, James C., and Yu. A. Chizmadzhev, 1996, “Theory of
electroporation: A review,” Bioelectrochem. Bioenerg. 41, 135–160.

Weaver, James C., and Robert A. Mintzer, 1981, “Decreased
bilayer stability due to transmembrane potentials,” Phys. Lett.
86A, 57–59.

Wei, Guo-Wei, 2010, “Differential geometry based multiscale mod-
els,” Bull. Math. Biol. 72, 1562–1622.

Wei, Ming-Tzo, Joseph Junio, and H. Daniel Ou-Yang, 2009, “Direct
measurements of the frequency-dependent dielectrophoresis force,”
Biomicrofluidics 3, 012003.

Weng, Ping-You, I-An Chen, Che-Kai Yeh, Pin-Yi Chen, and Jia-
Yang Juang, 2016, “Size-dependent dielectrophoretic crossover
frequency of spherical particles,” Biomicrofluidics 10, 011909.

Wertheimer, Nancy, and E. D. Leeper, 1979, “Electrical wiring
configurations and childhood cancer,” Am. J. Epidemiol. 109,
273–284.

Wiltschko, R., and W. Wiltschko, 1995, Magnetic Orientation in
Animals (Springer-Verlag, Berlin).

Wiltschko, Roswitha, 2012,Magnetic Orientation in Animals, Vol. 33
(Springer Science+Business Media, New York).

Wiltschko, Roswitha, and Wolfgang Wiltschko, 2003, “Avian nav-
igation: From historical to modern concepts,” Anim. Behav. 65,
257–272.

Wiltschko, Wolfgang, and Roswitha Wiltschko, 1972, “Magnetic
compass of European robins,” Science 176, 62–64.

Wiltschko, Wolfgang, and Roswitha Wiltschko, 2005, “Magnetic
orientation and magnetoreception in birds and other animals,”
J. Comp. Physiol. A 191, 675–693.

Torbati, Mozzafari, Liu, and Sharma: Coupling of mechanical deformation and …

Rev. Mod. Phys., Vol. 94, No. 2, April–June 2022 025003-60

https://doi.org/10.1016/j.jmps.2011.08.005
https://doi.org/10.1016/j.jmps.2011.08.005
https://doi.org/10.1017/S0033583501003729
https://doi.org/10.1529/biophysj.107.108498
https://doi.org/10.1063/1.4941108
https://doi.org/10.1021/jp807896g
https://doi.org/10.1039/c0jm00994f
https://doi.org/10.1039/c0jm00994f
https://doi.org/10.1016/S0006-3495(03)74842-5
https://doi.org/10.1016/S0006-3495(03)74842-5
https://doi.org/10.4161/cib.24859
https://doi.org/10.1038/nature11046
https://doi.org/10.1039/C4NR05791K
https://doi.org/10.1007/s00424-011-1004-8
https://doi.org/10.1007/s00424-011-1004-8
https://doi.org/10.1016/S0006-3495(97)78145-1
https://doi.org/10.1016/S0006-3495(97)78145-1
https://doi.org/10.1016/S0168-3659(99)00018-8
https://doi.org/10.1126/science.1124258
https://doi.org/10.2147/IJN.S32824
https://doi.org/10.1016/j.neuron.2011.09.024
https://doi.org/10.1039/b803015b
https://doi.org/10.1529/biophysj.103.037945
https://adsabs.harvard.edu/full/2004CRABS..57k..25V
https://adsabs.harvard.edu/full/2004CRABS..57k..25V
https://adsabs.harvard.edu/full/2004CRABS..57k..25V
https://adsabs.harvard.edu/full/2004CRABS..57k..25V
https://adsabs.harvard.edu/full/2004CRABS..57k..25V
https://adsabs.harvard.edu/full/2004CRABS..57k..25V
https://adsabs.harvard.edu/full/2004CRABS..57k..25V
https://doi.org/10.1016/j.bpj.2009.03.054
https://doi.org/10.1016/j.bpj.2009.03.054
https://doi.org/10.1016/S0006-3495(01)76035-3
https://doi.org/10.1038/37057
https://doi.org/10.1038/37057
https://doi.org/10.1523/ENEURO.0483-18.2019
https://doi.org/10.1088/1478-3975/3/3/007
https://doi.org/10.1088/0022-3727/27/7/036
https://doi.org/10.1016/S0304-3886(97)00126-5
https://doi.org/10.1016/S0304-3886(97)00126-5
https://doi.org/10.1016/S0302-4598(96)05062-3
https://doi.org/10.1016/0375-9601(81)90688-5
https://doi.org/10.1016/0375-9601(81)90688-5
https://doi.org/10.1007/s11538-010-9511-x
https://doi.org/10.1063/1.3058569
https://doi.org/10.1063/1.4941853
https://doi.org/10.1093/oxfordjournals.aje.a112681
https://doi.org/10.1093/oxfordjournals.aje.a112681
https://doi.org/10.1006/anbe.2003.2054
https://doi.org/10.1006/anbe.2003.2054
https://doi.org/10.1126/science.176.4030.62
https://doi.org/10.1007/s00359-005-0627-7


Winklhofer, M., and J. L. Kirschvink, 2010, “A quantitative assess-
ment of torque-transducer models for magnetoreception,” J. R. Soc.
Interface 7, 273–289.

Winklhofer, Michael, Elke Holtkamp-Rötzler, Marianne Hanzlik,
Gerta Fleissner, and Nikolai Petersen, 2001, “Clusters of super-
paramagnetic magnetite particles in the upper-beak skin of homing
pigeons: Evidence of a magnetoreceptor?,” Eur. J. Mineral. 13,
659–669.

Winterhalter, M., and W. Helfrich, 1988a, “Deformation of spherical
vesicles by electric fields,” J. Colloid Interface Sci. 122, 583–586.

Winterhalter, M., and Wolfgang Helfrich, 1988b, “Effect of surface
charge on the curvature elasticity of membranes,” J. Phys. Chem.
92, 6865–6867.

Wong, Tai-Kin, and Eberhard Neumann, 1982, “Electric field
mediated gene transfer,” Biochem. Biophys. Res. Commun. 107,
584–587.

Wu, Le-Qing, and J. David Dickman, 2012, “Neural correlates of a
magnetic sense,” Science 336, 1054–1057.

Xia, Nan, Tom P. Hunt, Brian T. Mayers, Eben Alsberg, George M.
Whitesides, Robert M. Westervelt, and Donald E. Ingber, 2006,
“Combined microfluidic-micromagnetic separation of living cells
in continuous flow,” Biomed. Microdevices 8, 299.

Xie, Xi, Alexander M. Xu, Sergio Leal-Ortiz, Yuhong Cao, Craig C.
Garner, and Nicholas A. Melosh, 2013, “Nanostraw-electroporation
system for highly efficient intracellular delivery and transfection,”
ACS Nano 7, 4351–4358.

Yamamoto, Tetsuya, Said Aranda-Espinoza, Rumiana Dimova, and
Reinhard Lipowsky, 2010, “Stability of spherical vesicles in
electric fields,” Langmuir 26, 12390–12407.

Yang, C. Y., and U. Lei, 2007, “Dielectrophoretic force and torque on
an ellipsoid in an arbitrary time varying electric field,” Appl. Phys.
Lett. 90, 153901.

Yang, Liju, 2012, “A review of multifunctions of dielectrophoresis in
biosensors and biochips for bacteria detection,” Anal. Lett. 45,
187–201.

Yang, Lun, and Kaushik Dayal, 2011, “A completely iterative method
for the infinite domain electrostatic problem with nonlinear
dielectric media,” J. Comput. Phys. 230, 7821–7829.

Yang, Peng, Reinhard Lipowsky, and Rumiana Dimova, 2009,
“Nanoparticle formation in giant vesicles: Synthesis in biomimetic
compartments,” Small 5, 2033–2037.

Ye, Hui, and Austen Curcuru, 2015, “Vesicle biomechanics in a time-
varying magnetic field,” BMC Biophys. 8, 2.

Ye, Ting, Hua Li, and Khin Yong Lam, 2011, “Motion, deformation
and aggregation of two cells in a microchannel by dielectropho-
resis,” Electrophoresis 32, 3147–3156.

Yellen, Gary, 2002, “The voltage-gated potassium channels and their
relatives,” Nature (London) 419, 35–42.

Yellin, Florence, Yizeng Li, Varun K. A. Sreenivasan, Brenda Farrell,
Manu B. Johny, David Yue, and Sean X. Sun, 2018,
“Electromechanics and volume dynamics in nonexcitable tissue
cells,” Biophys. J. 114, 2231–2242.

Zablotskii, V., O. Lunov, S. Kubinova, T. Polyakova, E. Sykova, and
A. Dejneka, 2016, “Effects of high-gradient magnetic fields on
living cell machinery,” J. Phys. D 49, 493003.

Zablotskii, Vitalii, Alexandr Dejneka, Šárka Kubinová, Damien Le-
Roy, Frédéric Dumas-Bouchiat, Dominique Givord, Nora M.
Dempsey, and Eva Syková, 2013, “Life on magnets: Stem cell
networking on micro-magnet arrays,” PLoS One 8, e70416.

Zablotskii, Vitalii, Tatyana Polyakova, and Alexandr Dejneka,
2018, “Cells in the non-uniform magnetic world: How cells
respond to high-gradient magnetic fields,” BioEssays 40,
1800017.

Zagnoni, Michele, and Jonathan M. Cooper, 2009, “On-chip electro-
coalescence of microdroplets as a function of voltage, frequency
and droplet size,” Lab Chip 9, 2652–2658.

Ze, Qiji, Xiao Kuang, Shuai Wu, Janet Wong, S. Macrae Montgom-
ery, Rundong Zhang, Joshua M. Kovitz, Fengyuan Yang, H. Jerry
Qi, and Ruike Zhao, 2020, “Magnetic shape memory polymers
with integrated multifunctional shape manipulation,” Adv. Mater.
32, 1906657.

Zhadin, Mikhail N., 2001, “Review of Russian literature on bio-
logical action of DC and low-frequency AC magnetic fields,”
Bioelectromagnetics (N.Y.) 22, 27–45.

Zhang, Junyan, Zhenyu Song, Qinxin Liu, and Yongxin Song, 2020,
“Recent advances in dielectrophoresis-based cell viability assess-
ment,” Electrophoresis 41, 917–932.

Zhang, Ping-Cheng, Asbed M. Keleshian, and Frederick Sachs,
2001, “Voltage-induced membrane movement,” Nature (London)
413, 428–432.

Zhang, Xin, Kevin Yarema, and An Xu, 2017, Biological Effects of
Static Magnetic Fields (Springer, New York).

Zhao, Ruike, Yoonho Kim, Shawn A. Chester, Pradeep Sharma, and
Xuanhe Zhao, 2019, “Mechanics of hard-magnetic soft materials,”
J. Mech. Phys. Solids 124, 244–263.

Zhao, Wei, and Ruijin Yang, 2010, “Experimental study on con-
formational changes of lysozyme in solution induced by pulsed
electric field and thermal stresses,” J. Phys. Chem. B 114, 503–510.

Zhao, Xuanhe, and Zhigang Suo, 2008, “Electrostriction in elastic
dielectrics undergoing large deformation,” J. Appl. Phys. 104,
123530.

Zheng, Jie, and Matthew C. Trudeau, 2015, Handbook of Ion
Channels (CRC Press, Boca Raton).

Zhou, Qiangjun, Peng Zhou, Austin L. Wang, Dick Wu, Minglei
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