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Tuning Crumpled Sheets for An
Enhanced Flexoelectric Response
Flexoelectricity is a universal phenomenon present in all dielectrics that couples electrical
polarization to strain gradients and vice-versa. Thus, structures and configurations that
permit large strain gradients facilitate the design of an enhanced electromechanical cou-
pling. In a recent work, we demonstrated the prospects for using crumpling of essentially
arbitrary thin sheets for energy harvesting. Crumples, with their defect-like nature, admit
singular and rapidly varying deformation fields and are thus ideal for engineering sharp
non-uniformities in the strain field. In this work, we consider how to tune the design of crum-
pled sheets for a significant flexoelectric response. Specifically, we analytically derive the
electromechanical coupling for a thin crumpled sheet with varying thickness and graded
Young’s modulus as key design variables. We show that the electromechanical coupling
of such crumpled sheets can be tuned to be nearly five times those of the homogeneous film.
[DOI: 10.1115/1.4052575]
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1 Introduction
Crumpling an ordinary paper can produce electricity. This rather

non-intuitive assertion was decisively addressed in a recent work
[1]. The phenomenon that allows for this unexpected observation
is flexoelectricity, a rather distinctive electromechanical coupling
between polarization and strain gradients [2–6]. Since flexoelectri-
city exists in all dielectrics, as long as strongly inhomogeneous
strains can be engineered, materials need not be piezoelectric to
exhibit a non-trivial electromechanical coupling.
A notable aspect of flexoelectricity is the associated so-called

size-effect [6,7]. As well appreciated in the mechanics literature,
while in classical elasticity, strain fields (for a set of given boundary
conditions) are invariant with respect to self-similar scaling, strain
gradients increase dramatically with a reduction in feature size.
Accordingly, for many materials, flexoelectricity acquires signifi-
cant prominence only at characteristic length scales at the nano-
scale. This has led to applications such as piezoelectric
nanomaterials without using piezoelectric materials [8–11], nano-
scale energy harvesting [12–16], sensors and actuators [17–20],

biological membranes [21–24], biophysical phenomena [25–27],
defects [28,29], ferroelectric domain engineering, [30–33], flexo-
electric semiconductors [34], soft matter [24,35,36], and many
others.
The universal nature of flexoelectricity makes it an attractive

avenue to engineer electromechanical coupling. Unfortunately,
however, the flexoelectric coefficients of most materials are rather
small. Researchers have pursued approaches to artificially
enhance flexoelectricity by electret-like materials where charges
and dipoles are embedded [16,37–40]. An alternative approach,
which we pursue in this work, is to engineer large strain gradients.
Heretofore, several strategies have been studied by researchers to
produce large strain gradients, e.g., combining metallic nanowires
with BST nanosheets [10], stacking thin sheets of disparate materi-
als in certain order [8], and nano-sized triangular voids or inclusions
in materials [41,42].
Germane to the topic of the current paper, flexoelectricity has also

been investigated in the context of 2D materials including graphene
[41,43–45] and biological membranes [21–24]. Indeed, elastic
sheets or 2D material-like structure can easily bend and thus
exhibit large changes in curvature (arguably the most facile way
to induce inhomogeneous strains). Crumpling of flat sheets, a
common occurrence in our daily lives as embodied with ordinary
paper, can produce large curvatures. Recently, the mechanics of
crumpling has attracted significant attention but has been mostly
investigated purely as a mechanical and geometrical problem
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[46–50]. As shown in Fig. 1, a thin film is crumpled by a concen-
trated force which can induce large strain gradients near the deflec-
tion tip. In an interesting work, going beyond purely mechanical
considerations, Kodali et al. [51] proposed the generation of elec-
tricity from the crumpling of polymer piezoelectric foils for poten-
tial applications in wearable electronics. Recently, Wang et al.
recognized that due to flexoelectricity, crumpling of even an ordi-
nary thin sheet ought to exhibit electromechanical coupling [1].
Specifically, we showed the emergence of a significant flexoelectric
response due to large curvature at crumples, established scaling
laws for the electromechanical behavior of crumpled flexoelectric
thin sheets and showed that non-trivial energy harvesting may be
achieved at submicron length scales.
While our prior work [1] established the usefulness of crumpling

for flexoelectricity mediated energy harvesting, the question per-
taining to how we might optimize or tune the electromechanical
response remains unanswered. In this work, we propose the
mechanics problem related to the crumpling of a flexoelectric thin
sheet with varying elastic modulus and thickness. We are able to
show, using both analytical means and simple numerical calcula-
tions, that variations of thickness and elastic modulus provide for
an effective means to tune the flexoelectric response of a crumpled
sheet and can be exploited for improving emergent electromechan-
ical coupling. This paper is organized as follows. In Sec. 2, we
present the theoretical formulation of the crumpling of thin sheets
and the governing equations are obtained by using a variational
approach. In Sec. 3, we discuss the electromechanical coupling
for two illustrative cases: one is a circular sheet with varying thick-
ness and the second is a circular sheet with graded Young’s
modulus. Conclusions are given in Sec. 4.

2 Theoretical Formulations
For a dielectric occupying a volume Ω bounded by a surface ∂Ω,

the total potential energy is given by [52]

U =
∫
Ω
WL(∇u, ∇∇u, p) −

1
2
ϵ0 ∇ξ| |2 + p ·∇ξ dv

−
∫
∂Ω
Qξ ds −

∫
∂Ω
t · u ds (1)

where ∇ is the gradient, u is the displacement, p is the polarization,
ξ is the electric potential, Q is surface charge density, and t is the
applied dead load, ϵ0= 8.85 × 10−12 F/m is the vacuum permittivity,
and WL(∇u, ∇∇u, p) is the internal energy function.

Assuming independent variations of u, p, ξ and their gradients,
the variation of the total potential energy δU is

δU =
∫
Ω
Tδ∇u + T̃δ∇∇u + E · δp

− ϵ0∇ξ · δ∇ξ + ∇ξ · δp + p · δ∇ξ dv

−
∫
∂Ω
Qδξ ds −

∫
∂Ω
t · δu ds (2)

where

T =
∂WL

∂∇u
, T̃ =

∂WL

∂∇∇u
, E =

∂WL

∂p
(3)

T is the second-order stress tensor, T̃ is the third-order stress tensor,
and E is the effective local electric field.
Hence, the first variation of the total potential energy (1) equals to

zero at equilibrium and then gives

∇ · (T − ∇ · T̃) = 0 in Ω (4)

E + ∇ξ = 0 in Ω (5)

∇ · (−ϵ0∇ξ + p) = 0 in Ω (6)

where the corresponding boundary conditions on ∂Ω are

(T − ∇ · T̃)n − ∇̂ · (T̃n) = t on ∂Ω (7)

T̃n = 0 on ∂Ω (8)

(−ϵ0∇ξ + p) · n = Q on ∂Ω (9)

where ∇̂ · (T̃n) =∇∥ · (T̃n) − (∇∥ · n)(T̃n)n, ∇∥ = (I − n⊗ n)∇ is
the surface gradient operator [53] and I is the unit dyadic.
Within a linearized constitutive setting, the internal energy func-

tion WL(∇u, ∇∇u, p) can be written as [54]

WL =
1
2
∇u · c∇u +

1
2
p · ap + p · d∇u + p · f∇∇u +

1
2
∇∇u · g∇∇u

(10)

where the coefficients c, a, d, f, and g are material property tensors.
The fourth-order tensor c is the elastic tensor. The second-order
tensor a is the reciprocal dielectric susceptibility. The third-order
tensor d is the piezoelectric tensor. The fourth-order tensor f is
the flexoelectric tensor, and g is the sixth-order tensor related to
the strain-gradient effect.
Finally, according to Eq. (3), the constitutive equations are

T =
∂WL

∂∇u
= c∇u + dp

T̃ =
∂WL

∂∇∇u
= g∇∇u + fp

E =
∂WL

∂p
= ap + d∇u + f∇∇u

(11)

2.1 Large Deflection of a Circular Film. Consider a flat thin
film of an isotropic dielectric materials (shown in Fig. 2). In terms of
cylindrical polar coordinates (ρ, θ, z) with unit basis (eρ, eθ, ez), the
material point is denoted by x = ρeρ + zez and the geometry of the
film is defined in the reference region

0 ≤ ρ ≤ Rp, 0 ≤ θ| | ≤ π, 0 ≤ z ≤ h (12)

The upper surface of the circular film is at z= 0, the lower surface is
at z= h and the surrounding surface is at ρ=Rp. Typically, the
middle surface of the film is at z= h/2.

Fig. 1 Schematic of the generation of electricity from the crum-
pling of a thin dielectric film. The circular film is placed on a sup-
porting structure (a hollow column in this picture) and a
concentrated force is applied vertically to generate a crumpled
sheet.
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2.1.1 Displacement Vector. We first consider the deformation
of the middle surface. With a mapping χ, a material point x on
the middle surface is deformed to a spatial point y = χ (x) = x + u,
where u is the displacement vector. Note that the displace-
ment vector on the middle surface is a function of two variables ρ
and θ. We then decompose u into two parts: the in-plane displace-
ment us and the out-of-plane deflection u⊥, i.e.,

u = us + u⊥ (13)

By the unit basis (eρ, eθ, ez), we have

us = uρ(ρ, θ)eρ + uθ(ρ, θ)eθ and u⊥ = ζ(ρ, θ)ez (14)

The flat film, as shown in Fig. 2, deforms into a developable cone
(d-cone) shape when it is subjected to a vertically concentrated
force. To model the d-cone phenomenologically, the d-cone can
be approximately divided into two regions: the core region (0 <
ρ <Rc) and the rest (Rc < ρ<Rp). Here, Rc is the core radius that
denotes actually the region near the d-cone tip [49,50].
The out-of-plane deflection of crumples film can be assumed as

follows:

ζ(ρ, θ) =
ζ∗(ρ, θ), 0 < ρ < Rc

α1ρψ∗(θ), Rc < ρ < Rp

{
(15)

As depicted in Fig. 2, α1 is the ratio of the center deflection d to
the supporter inner radius R and α2 is the dimensionless core
radius, i.e.,

α1 =
d

R
and α2 =

Rc

R
(16)

Then, the dimensionless radius is ρ̂ = ρ/R. The deflection func-
tion ζ*(ρ, θ) in the core region is complicated, and its exact
form is still an open problem. On the other hand, Cerda
and Mahadevan [48] gave the form of the deflection function
ψ*(θ) away from the core region: ψ∗(θ) = H∗( θ| | − θ1)+
ψ̃(θ)H∗(θ1 − θ| |). Here, H* is the Heaviside function and ψ̃ (θ) =
(sin θ1 cos αθ− α sin αθ1 cos θ)/ (sin θ1 cos αθ1 − α sinαθ1 cos θ1).
As reported, α ≈ 3.8, θ1 ≈ 1.21 rad, and the angle θ1 is a
material-independent constant and its magnitude is predicted to
be θ1≈ 70° by Cerda and Mahadevan.
Moreover, the crumpled film in terms of the variation of the

local curvature can be divided into two parts: the concave part
(−θ1 < θ< θ1) and the convex part (θ1 < θ < 2π− θ1). As shown in
Fig. 2, the applied force detaches the film from the supporting
hoop in the concave part; however, the film still contacts the sup-
porting hoop in the convex part.

2.1.2 Strain Tensor and Curvature Tensor. By the decom-
posed displacement vectors, the in-plane strain tensor Es and the
linearized curvature tensor κ can be defined as [55]

Es =
1
2
[∇̃us + (∇̃us)T + ∇̃ζ ⊗ ∇̃ζ] (17)

κ = −∇̃∇̃ζ(ρ, θ) (18)

where the two-dimensional (in-plane) gradient operator ∇̃ in cylin-
drical polar coordinates is ∇̃ = eρ∂ρ + eθρ−1∂θ. By Eqs. (14), (17),
and (18), the in-plane strain tensor Es and the curvature κ can be
expressed in terms of functions uρ, uθ, and ζ as

Es := ∂ρuρ +
1
2
(∂ρζ)

2

[ ]
eρ ⊗ eρ

+
1
2

(
∂θuρ
ρ

−
uρ
ρ
+ ∂ρuθ +

∂ρζ∂θζ
ρ

)[ ]
eρ ⊗ eθ

+
1
2

(
∂θuρ
ρ

−
uρ
ρ
+ ∂ρuθ +

∂ρζ∂θζ
ρ

)[ ]
eθ ⊗ eρ

+
uρ
ρ
+
∂θuθ
ρ

+
1
2
(∂θζ)

2

ρ2

[ ]
eθ ⊗ eθ (19)

and

κ := [−∂ρρζ]eρ ⊗ eρ + −
∂ρθζ
ρ

+
∂θζ
ρ2

[ ]
eρ ⊗ eθ

+ −
∂ρθζ
ρ

+
∂θζ
ρ2

[ ]
eθ ⊗ eρ + −

∂ρζ
ρ

−
∂θθζ
ρ2

[ ]
eθ ⊗ eθ (20)

In the outer region (Rc< ρ<Rp), the condition of inextensibility
requires that the stretching strains vanish at moderate deflections
[48]. By using the out-of-plane deflection ζ(ρ, θ)= α1ρψ*(θ) in
Rc < ρ<Rp, the in-plane strain tensor Es and the linearized curvature
tensor κ in Eqs. (19) and (20) are obtained as

Es = 0, κ := −
α1
ρ
[∂θθψ

∗(θ) + ψ∗(θ)]eθ ⊗ eθ (21)

In contrast, the curvature around the crumple tip is sufficiently
large; therefore, we can only approximately determine the orders
of the in-plane strain and curvature. As observed in experiments

[49,50], the orders are Es| | ∼ α1α2( )2 and κ| | ∼ α1
α2

1
R
. Wang et al.

[1] introduced two parameters λE = 5.5, λκ = 5 to amend these sim-
plifications for small deformation. Hence, the magnitude of the
strain tensor Es and the curvature tensor κ are written as

Es| | ≈ λE α1α2( )2, κ| | ≈ λκ
α1
α2

1
R

(22)

2.2 Maxwell’s Equations and Electric Boundary
Conditions. Since the film’s thickness is much lower than its
in-plane dimension, we mainly focus on the electric quantities in
the thickness direction. The electric field is e(z), the electric poten-
tial is p(z), and the electric potential is V(z).
From Maxwell’s equations, the electric field is an irrotational

field and

e(z) = −
∂V(z)
∂z

(23)

Moreover, without free charges in the material, the Maxwell equa-
tion requires that

∂[ϵ0e(z) + p(z)]
∂z

= 0 (24)

Integration with respect to z gives ϵ0e(z)+ p(z)= constant, 0 < z< h.
Next, we examine the electric boundary conditions. The electric

Fig. 2 Schematic of the crumpling of a circular film on a hollow
column. (a) With the increase of a concentrated force F, the orig-
inally flat circular film gradually deforms to a crumpled film. A
larger applied force corresponds to a deeper central deflection.
(b) A crumpled circular film is observed in different directions
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boundary conditions on the upper and lower surfaces are charge-
controlled. In the absence of free charges, we have

ϵ0e(z) + p(z) = 0, at z = 0, h (25)

Therefore, we have e(z)=−p(z)/ϵ0, 0 < z < h.
We can further simplify the discussion by assuming constant

electric and polarization field in the thickness direction. In other
words, e(z) and p(z) and independent of z, and then the voltage dif-
ference between the upper and lower surfaces is

ΔV = eh = −
ph

ϵ0
(26)

2.3 Energy Formulation of Thin Films. For dielectric films,
the internal energy function (per unit area of the neutral surface) can
be written as [54]

WL =
1
2

Cs|Es|2 + Cb[tr(κ)]
2{ }

+
1
2

a p2 + 2pdstr(Es) + 2p fstr(κ) + g[tr(κ)]2
{ } (27)

The first term on the RHS is the purely elastic energy, Cs= ((1−

ν2)/12)Eh is the in-plane stiffness and Cb =
1
12

Eh3 is the bending

stiffness. The parameter a= 1/(ϵ− ϵ0) corresponds to the reciprocal
dielectric susceptibility, ϵ is the material permittivity. ds, fs, and g =
El20 are parameters that are related to the piezoelectric, flexoelectric,
and strain-gradient effects, respectively, and l0 is the material
length.
From the variation of the energy function (27), the electric field e

is e= ∂WL/∂p. Combining the result e=−p/ϵ0 obtained in Sec. 2.3,
we have

p = −[dstr(Es) + fstr(κ)]/(a + ϵ−10 ) (28)

which directly shows that, in the case of nonpiezoelectricity ds= 0,
the polarization is proportional to the mean curvature 1/2tr(κ). Such
a linear relation has been reported in the biological context [5,39,56]
and for crystalline membranes [44,45].
By substituting the linear relation into the energy function (27),

the internal energy function WL becomes a function of variables ρ
and θ with two parameters α1 and α2. In addition, the potential
work done by the centering dead load F is equal to −Fd=
−FRα1. Collecting all the above expressions, we obtain the follow-
ing final expression for the total energy in terms of α1 and α2:

U(α1, α2) =
1
2

∫R
0

∫π
−π

Cs|Es|2
{

+ (Ks + K∗
s )[tr(κ)]

2}ρ dθ dρ − FRα1 (29)

where the coefficients Ks = Cb + hg − hf 2s /(a + ϵ−10 ), K∗
s =

−hf 2s (η2 + 2η)/(a + ϵ−10 ) with the ratio η = dstr(Es)/[ fstr(κ)]. The
first variation of the total potential energy (29) gives governing
equations:

∂U
∂α1

(α1, α2) = 0 and
∂U
∂α2

(α1, α2) = 0 (30)

Solutions of the two algebraic equations (30) give the dimen-
sionless center deflection α1 and the core radius α2. Thus, the cur-
vature can be obtained by using Eqs. (21) and (22). After
obtaining the curvature, the generated polarization p can be
given by the relation Eq. (28). And, the induced charge is deter-
mined as Q =

�R
0

�π
−πpρ dθ dρ.

2.3.1 Films With Varied Thickness. Supposing that the thick-
ness of the film varies linearly along the radial direction of the
film, that is,

h = h0 + (n1 − 1)

(
1 −

ρ

Rp

)
h0 (31)

where h0 is the thickness at the center of the film and n1 is the ratio
of the thickness at the center to the thickness at the outer, i.e., n1=
h(0)/h(Rp).
After some basic but tedious calculations, the non-dimensional

energies of the core and the d-cone may be derived to be

�Ucore =

1
2

�Rc

0

�π
−π Cs|Es|2 + (Ks + K∗

s )[tr(κ)]
2

{ }
ρ dθ dρ

1
2
πR2(C0

b/h
2
0)

= α41α
6
2
�C
0
sλ

2
E +

�h0α21
120�R3

p

120�h0λ
2
κ
�R3
p

�K0
s + �K∗0

s

( ){

+ 15α22�E�h
2
0λ

2
κ
�Rpn1(n1 − 1)2 − 4α32�E�h

2
0λ

2
κ (n1 − 1)3

− 20α2�R
2
p(n1 − 1) �En21�h

2
0λ

2
κ + 4�g�h

2
0λ

2
κ − 4�h0λ

2
κ�a

∗�f 2s (η + 1)2
[

+
1
3
(1 − ν2)α21α

6
2
�Eλ2E

]}
(32)

and

�Ud−cone =

1
2

�Rd

Rc

�π
−π Cs|Es|2 + (Ks +K∗

s )[tr(κ)]
2

{ }
ρdθdρ

1
2
πR2(C0

b/h
2
0)

=
�h
2
0I1α

2
1

72�R3
p

72�a∗�f 2s �R
2
p(n1 − 1) �Rp −α2

( ){
+ 72�K0

s
�R3
p ln

�Rp

α2

− �h0(n1 − 1) 9�R3
p
�E(n21 + n1)+ 72�R3

p�g− 18α2�R
2
p
�En21 + 4�g
( )[

+9α22�E�Rp(n
2
1 − n1)+ 2�E(n1 − 1)2 �R3

p −α32

( )]}
(33)

where I1 =
�1
−1[∂θθψ

∗(πθ)+ψ∗(πθ)]
2
d�θ, C0

b =Eh30/12, a∗ = 1/
(a+ ϵ−10 ), and the dimensionless quantities are

�h0 =
h0
R
, �Rp =

Rp

R
, �a∗ =

a∗

ϵ0

�C
0
s =C0

s

/
C0
b

h20
=
1− ν2

12
Eh0/

C0
b

h20

�K0
s =K0

s /C
0
b = (C0

b + h0g− h0a
∗f 2s )/C

0
b

�K∗0
s =K∗0

s /C0
b =−h0a∗f 2s (η

2 + 2η)/C0
b

�f s = fs/

�����
C0
b

h0ϵ0

√
, �E=E

Rh20
C0
b

, �g= g
R

C0
b

�F=FR

/(
1
2
πR2C

0
b

h20

)

(34)

The dimensionless energy associated with the external force
gives

�UF =−FRα1

/
1
2
πR2C

0
b

h20

( )
=−�Fα1 (35)
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Finally, the dimensionless total energy is

�U = �Ucore + �Ud − cone + �UF (36)

The first variation of the total potential energy δU[u, p, ξ]= 0
now becomes δ�U[α1, α2]= 0. Hence, the governing equations can
be written as the following form:

∂�U[α1, α2]
∂α1

= 0,
∂�U[α1, α2]

∂α2
= 0 (37)

2.3.2 Films With Graded Young’s Modulus. Assuming that
Young’s modulus of the film varies linearly along the radial direc-
tion of the film, that is

E = E0 + (n2 − 1) 1 −
ρ

Rp

( )
E0 (38)

where E0 is the Young’s modulus at the edge of the film and n2 is
the ratio of the Young modulus at the center to the Young modulus
at the outer, i.e., n2=E(0)/E(Rp).
The non-dimensional energies of the core and the d-cone parts

are

�Ucore =

1
2

�Rc

0

�π
−π Cs|Es|2 + (Ks + K∗

s )[tr(κ)]
2

{ }
ρ dθ dρ

1
2
πR2(C0

b/h
2)

=
α21α2�E0

�h
3
(1 − n2)

18�Rp

�h
2
λ2κ + 12�l

2
0λ

2
κ + α21α

6
2λ

2
E(1 − ν2)

[ ]

+ α41α
6
2
�C
0
sλ

2
E + α21�h

2
λ2κ �K0

s + �K∗
s

( )
(39)

and

�Ud−cone =

1
2

�Rp

Rc

�π
−π Cs|Es|2 + (Ks + K∗

s )[tr(κ)]
2

{ }
ρ dθ dρ

1
2
πR2(C0

b/h
2)

=
α21�h

2
I1

12�Rp

�E0(1 − n2) �h
3 + 12�h�l

2
0

( )
�Rp − α2
( )

+ α21�h
2
I1 �K

0
s ln

�Rp

α2
(40)

where I1 =
�1
−1[∂θθψ
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The dimensionless energy associated with the external force is

�UF = −FRα1
/

1
2
πR2 C

0
b

h2

( )
= −�Fα1 (42)

Finally, the dimensionless total energy is

�U = �Ucore + �Ud − cone + �UF (43)

Thus, the governing equations can be obtained as

∂�U[α1, α2]
∂α1

= 0,
∂�U[α1, α2]

∂α2
= 0 (44)

3 Results and Discussions
With the theory in place, we now study the electromechanical

coupling of dielectric films with graded thickness and Young’s
modulus. The parameters used in our numerical calculations are
consistent with those in Ref. [1]. The flexoelectric constant is
chosen as fs=−179 Nm/C. The geometrical and material parame-
ters of a homogeneous film are Rp= 50 mm, h0= 52 μm, E0=
5 Gpa, and ds= 5 pC/N. The nonlocal elastic coefficient is taken
to be the same as in Ref. [1], g= 4.5 × 10−6 N. The radius of the sup-
porting hoop is R= 12.5 mm.

3.1 Circular Films With Varied Thickness. To investigate
the effects of varying thickness on the electromechanical coupling,
we simply assume a linear variation of the thickness along the radius:

h = h0 + (n1 − 1) 1 −
ρ

Rp

( )
h0 (45)

where h0 is the thickness at the outer, i.e., h(Rp)= h0, and n1 is the
ratio of the thickness at the center to the thickness at the outer, i.e.,
n1= h(0)/h(Rp). For linearly varied thickness, we can control the
ratio n1. For 0 < n1 < 1, the center part is thinner than the outer part,
see Fig. 3, and vice versa. The case of n1= 1 corresponds to a
uniform film.
In Fig. 4, we show the variation of the normalized center deflec-

tion α1 and the core radius α2, defined in Eq. (16), with respect to the

Fig. 3 (a) A circular film with varied thickness along the radius. The dielectric film is coated with two compliant
electrodes on the top and bottom surfaces. (b) Semi-cut view of the circular film. (c) Coordinates are fixed on the
semi-cut view.
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applied force F. For n1= 1 (uniform film), the deflection α1
increases almost linearly with the increase of F while the core
radius α2 decreases nonlinearly with the increase of F. In this
paper, we focus on small and modulate deflections, therefore,
large deflection (α1 > 0.3) is excluded.
In Fig. 4(a), for a crumpled film at a given α1, the smaller the ratio

n1, the smaller the applied force F. This is because a small tip deflec-
tion α1 corresponds to a small bending stiffness and then a small
applied force can induce a large deflection. Note that the deflection
of thin films is almost proportional to the inverse of the bending
stiffness, and bending stiffness is proportional to the cube of thick-
ness. In other words, if the thickness of a homogeneous film is
reduced by a half, the applied force is reduced to about 1/8 to
achieve the same deflection. Such a phenomenon is also observed
in Fig. 4(a).
In Fig. 4(b), for a given applied load, the smaller the ratio n1, the

smaller the core radius α2. This interesting observation indicates
that compared to a uniform film, a film with thinner thickness
around the center has a smaller core size of the crumple. On the
other hand, the thinner film has a much larger deflection than that
of a homogeneous film at a given dead load. The two different

variations implies that there may exist a potential competition
between deflection and crumpling.
One way to evaluate the intensity of electromechanical coupling

is to determine the coefficient between induced charges Q and the
applied force F, that is, deff=Q/F. The reference parameter is
chosen to be deff0 = 223 pC/N. For homogeneous films with param-
eters Rp= 50 mm, h0= 52 μm, E0= 5 Gpa, and ds = 5 pC/N, we
investigate the coupling coefficient deff=Q/F when the tip deflec-
tion at α1= d/R= 1/3. Moreover, to study the size effects on the
electromechanical coupling, we introduce a scale factor γ to
control the dimensions, that is, γ(Rp : R : h). Typically, γ= 1 and
n1= 1 correspond to the originally uniform film.
In Fig. 5, the normalized coefficient �d = deff /deff0 increases with

the decrease of the film size (γ decreases from 1). The increase of
the coefficient indicates that the electromechanical coupling notice-
ably depends on the structure size. However, the coefficient cannot
increase monotonically with the decrease of the size. This is because
that the purely elastic strain-gradient effects (mediated by the coef-
ficient “g”) plays an important role when the size decreases to nano
scale. Here, we also focus on the effects of varying thicknesses
(denoted by n1) on the coupling.
The peak of the curve (n1= 1, a homogeneous film) in Fig. 5

is �d = 270.4 at γ= 1.93 × 10−3. However, the peak of the curve
(n1= 0.2) is �d = 1245.8 at γ = 3.63 × 10−3. The comparison directly
shows that a film with thinner thickness around the center can
achieve a much higher electromechanical coupling, i.e., the
center thickness decreases to 1/5 of the original thickness, the cou-
pling coefficient approximately increases five times. Moreover,
Fig. 5 demonstrates that, at the same scale factor γ for different
dielectric films, a thinner film at the center corresponds to a
larger coupling coefficient �d. Crumpling of dielectric films with
graded thickness are able to generate increased flexoelectricity-
mediated charge and thus have better electromechanical coupling
performance.

3.2 Circular Films With Graded Young’s Modulus. In con-
trast to films with graded thickness in the previous section, we now
consider films with a linearly varying Young’s modulus along the

Fig. 4 (a) Applied vertical force F versus dimensionless tip
deflection α1. (b) Applied vertical force F vs. dimensionless tip
deflection α2. Different ratio n1 corresponds to different varied
thickness in Eq. (45).

Fig. 5 The effective flexoelectric effect �d = deff/deff
0 versus non-

dimensional scale factor γ for different films with varying thick-
nesses in Eq. (45)

Fig. 6 (a) A circular film with graded Young’s modulus along the radius. The dielectric
film is coated with two compliant electrodes on the top and bottom surfaces.
(b) Semi-cut view of the circular film. (c) Coordinates are fixed on the semi-cut view.
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radius:

E = E0 + (n2 − 1) 1 −
ρ

Rp

( )
E0 (46)

where E0 is Young’s modulus at the outer, i.e., E(Rp)=E0, and n2 is
the ratio of the Young modulus at the center to that at the outer, i.e.,
n2=E(0)/E(Rp). For 0 < n2 < 1, the center part is softer than the outer
part, see Fig. 6, and vice versa. The case of n2= 1 denotes a homo-
geneous film.
In Fig. 7, we plot the variations of the normalized center deflec-

tion α1 and the core radius α2 with respect to the applied force F.
With the increase of F, in the case of n2= 1, the deflection α1
increases almost linearly but the core radius α2 decreases nonli-
nearly. In Fig. 7(a) at a given α1, a smaller ratio n2 corresponds

to a smaller applied force F. This phenomenon is also observed
in Fig. 4(a) since the bending stiffness is determined by both the
Young modulus and thickness. The trends of curves in Fig. 7(b)
are similar to those in Fig. 4(b), i.e., a smaller ratio n2 corresponds
to a smaller core radius α2 for a given applied load, which indicates
that a film with smaller Young’s modulus around the center has a
smaller core size of the crumple.
Similar to Fig. 5, we investigate the electromechanical coupling

by scaling the dimensions of films in Fig. 8. We have discussed the
size effect of the electromechanical coupling in Sec. 3.1. Here, we
focus on the effects of graded Young’s modulus (denoted by n2) on
the coupling. The peak of the curve (n2= 1) in Fig. 8 is �d = 270.4
at γ= 1.93 × 10−3. However, the peak of the curve (n2= 0.2) is �d =
717.0 at γ= 1.93 × 10−3. The comparison directly shows that a film
with smaller Young’s modulus around the center can achieve a
much higher electromechanical coupling, i.e., the center Young’s
modulus decreases to 1/5 of the original Young’s modulus, the cou-
pling coefficient approximately increases 2.5 times. Moreover, we
show that at the same scale factor γ for different dielectric films, a
softer film at the center corresponds to a larger coupling coefficient
�d. Like with the thickness, we conclude that gradation of Young’s
modulus in a flexoelectric crumpled sheet is an effective strategy to
enhance electromechanical coupling.

4 Concluding Remarks
In the paper, we find that electromechanical coupling of crumpled

2D sheets can be tuned in a facile manner by varying the thick-
ness and elastic properties of the underlying materials. Our results
are largely analytical and hence can provide an easy guide for
design. Gradation of thickness and elastic properties of 2D
sheets is rather easily achievable by additive manufacturing based
approaches. To tune electromechanical coupling, there exist
optimum geometric sizes of the dielectric film with respect to
certain geometric scale factors. For graded dielectric films, either
thinning or softening films at the center can considerably improve
the coupling compared to uniform homogeneous films.
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