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A B S T R A C T

True piezoelectricity in soft materials is rare if not virtually non-existent. This impedes applications where both
large deformation and a strong electromechanical coupling are desirable e.g. soft robotics, biomedical sensors
and actuators, a class of energy harvesting devices among others. The widely used soft dielectric elastomers
rely on the electrostatic Maxwell stress effect for electromechanical coupling — a one-way quadratic effect
that requires extremely large voltage for actuation and does not allow for the facile conversion of mechanical
deformation into electricity. Prior research has shown that embedding (and stabilizing) immobile charges or
dipoles in soft matter i.e. creating so-called electrets, can lead to an emergent piezoelectric effect. In this work,
using a recently developed homogenization theory for soft electret materials, we derive closed-form expressions
to design soft apparently piezoelectric materials with an ellipsoidal microstructure. Specifically, we determine
both effective longitudinal (𝑑33) and transverse (𝑑31) piezoelectric coefficients of the material and study the
impact of the material properties on these two coefficients. Conventional electrets exhibit a rather weak 𝑑31,
which is quite disadvantageous for applications where flexure is important (e.g. energy harvesting). Either an
elastic, or a dielectric contrast is essential for the emergence of piezoelectricity in electrets and, depending on
the microstructural details, these two effects can either strengthen or diminish the other. Our results indicate
that the microstructure and material properties which lead to an optimum 𝑑33 effect are different from the
conditions underlying the optimal 𝑑31 response. The maximum 𝑑31 effect is observed in electrets where the
inclusions are mechanically harder but dielectrically softer than the matrix material. Finally, we find that a
significantly large 𝑑33 piezoelectric response is possible for spheroid inclusion microstructures with large aspect
ratios.
. Introduction

Soft materials are capable of large deformation and thus enable
pplications in the area of soft robotics (Trivedi et al., 2008), stretch-
ble and wearable electronics (Dong et al., 2020; Rogers et al., 2010;
hadi et al., 2019; Kammoun et al., 2016), flexible sensors and ac-

uators (Rafsanjani et al., 2018; Lim et al., 2020) and biocompatible
evices (Cianchetti et al., 2018; Kim et al., 2012). A key imperative
n the design of soft materials is to induce a mechanical response
hen subjected to a suitable stimuli e.g. electrical or magnetic fields,
H, temperature among others. Many applications of soft materials
equire a piezoelectric effect — a two way linear coupling between
lectric field and mechanical deformation. However, non-trivial piezo-
lectricity exists only in a rather limited number of materials. The
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1 In what follows, we will use these terms interchangeably and simply refer to both as ‘‘electrostriction’’. For a more subtle discussion regarding their distinction,
ee Zhao and Suo (2008).

typical piezoelectric materials (usually crystalline) are hard, brittle
and are ill-suited for some of the aforementioned applications. The
electromechanical coupling in soft dielectrics is limited to the electro-
static Maxwell stress effect (or alternatively electrostriction).1 Due to
electrostriction, all dielectric material deform in response to an applied
electric field (Newnham et al., 1997). However, this effect is rather
weak so hard dielectrics barely exhibit any discernible deformation.
While soft materials like dielectric elastomers are well-able to exploit
this form of electromechanical coupling, we note that electrostriction
is a nonlinear (quadratic) coupling where the deformation scales as
the square of the imposed electric field. This implies that deformation
does not reverse if the imposed electric field is reversed. In addition,
electrostriction is a one-way coupling i.e. the material deforms in
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Fig. 1. Longitudinal and transverse piezoelectric effects in electret materials composed
of a matrix and embedded inclusions. Existence of electric charges with opposite signs
on the surface of inclusions lead to the existence of a nonzero residual polarization
inside the material (shown schematically with arrows). Electric field generated as a
result of loading 𝜎33 is referred as 𝑑33 effect and electric field generated as a result of
loading 𝜎11 is referred as 𝑑31 effect.

response to an electric field but the applied deformation does not
generate an electric field. Finally, significantly large electrical fields are
necessary to induce actuation.

There appear to be two approaches to engineer a piezoelectric-like
behavior in otherwise non-piezoelectric soft materials: (i) exploitation
of the phenomenon of flexoelectricity (Yudin and Tagantsev, 2013;
Zubko et al., 2013; Krichen and Sharma, 2016), and (ii) embedding
immobile charges and dipoles in materials thus creating so-called elec-
trets. Discussion of flexoelectricity is beyond the scope of this work
and we refer the reader to several original works (Sharma et al.,
2007; Mocci et al., 2021; Zhang et al., 2021; Majdoub et al., 2008,
2009; Mbarki et al., 2014; Mohammadi et al., 2014; Wang et al.,
2019; Grasinger et al., 2021; Abdollahi et al., 2019) and review ar-
ticles (Tagantsev and Yudin, 2016; Krichen and Sharma, 2016; Deng
et al., 2017, 2020; Nguyen et al., 2013; Zhuang et al., 2022) for
further information. The exploitation of electrets as materials that
can mimic piezoelectrics began in earnest in the eighties (Sessler,
1980) when researchers created soft foamy polymers with charges
and dipoles trapped on void surfaces (Sessler and Hillenbrand, 1999;
Neugschwandtner et al., 2000; Zhang et al., 2004). Piezoelectric coef-
ficient as large as 1200 pC/N (almost 6 times PZT) has been reported
for such materials (Hillenbrand and Sessler, 2008; Bauer et al., 2003).

Electret materials have been subject of experimental research for
several decades (Kacprzyk et al., 1997; Neugschwandtner et al., 2000;
Hillenbrand and Sessler, 2000; Wen et al., 2019) including, recent, in
the context of 2D materials (Apte et al., 2020). They have found appli-
cations in microphones (Sessler and West, 1966), sensors (Gong et al.,
2019), data storage (Cheng et al., 2018) and energy harvesting (Suzuki
et al., 2010; Boland et al., 2003)–in short, where-ever piezoelectrics are
used. At this point of development, electret materials with large surface
charge densities can be easily fabricated (Kashiwagi et al., 2011). In
addition, there have been several successful attempts for improving
charge stability in electrets — a key issue impeding their practical
application. For example, Luo et al. (2021) developed a spray coating
method for charge deposition to improve long term charge stability.

Recently, a few theoretical studies have also provided insights into
the design of electromechanical coupling in electret materials. Deng
et al. (2014a,b) presented a continuum model to explain the emer-
gence of piezoelectricity in simple 1-D layered electret structures.
They were able to interpret existing experimental results in which
2

a large longitudinal piezoelectric effect (so-called 𝑑33 effect) is ob-
served in electret materials(see Fig. 1 for explanation of longitudinal
and transverse piezoelectric effect). We remark that the transverse
piezoelectric coefficient is singularly important for applications (so-
called 𝑑31 effect) such as energy harvesting and in general, for both
sensing and actuation where flexure (the most facile deformation mode)
is important. However, conventional electrets exhibit a large 𝑑33 but
not 𝑑31. Rahmati et al. (2019) created a model to explain the reason
for small transverse piezoelectric effect in charged polymer foams
and proposed simple beam-based designs to improve this feature. Re-
cently, Liu and Sharma (2018) presented a comprehensive theory of
homogenization of electret materials.2 Works prior to this reference
focussed on simple boundary value problems to illustrate apparent
piezoelectricity. In the work of Liu and Sharma, they were able to
rigorously predict a true bulk piezoelectric effect and the conditions
necessary to achieve this. Specifically, they also presented some explicit
results for effective piezoelectric properties of some simple specific
microstructures (e.g. laminates). In addition, they showed that either
elastic mismatch or dielectric mismatch in electrets is essential for
the emergence of an apparent piezoelectric effect. We remark that
electrets have also been used to create other forms of multifunctional
materials such as magnetoelectrics (Alameh et al., 2015; Tan et al.,
2021), pyroelectric/electrocaloric materials (Darbaniyan et al., 2019)
or understand biological phenomena (Darbaniyan et al., 2021; Torbati
et al., 2022).

Despite the work on electrets so far, there remain several unan-
swered questions about the emergent piezoelectric effect:

• Elastic heterogeneity is essential for the emergence of piezoelec-
tricity in electrets however it is unclear how the interplay of
elastic properties impact the average piezoelectric response.

• Although a large 𝑑33 piezoelectric coefficient has been achieved in
electrets, the 𝑑31 effect is usually quite small (Neugschwandtner
et al., 2001; Rahmati et al., 2019). What design strategy may be
employed to improve 𝑑31 coefficient in electrets?

• Liu and Sharma (2018) argue that either elastic or dielectric mis-
match must be present in electrets for apparent piezoelectricity.
What is the interplay between dielectric and elastic mismatch in
terms of tuning the effective response of electrets?

• Existing theoretical work have typically analyzed
one-dimensional (or quasi-one-dimensional) electrets. While these
studies have been insightful, little is known about how a 3D di-
mensional microstructure could impact the effective piezoelectric
response of electrets.

In this work, using the broad homogenization theoretical frame-
work of Liu and Sharma (2018), we analyze soft electret materials
with ellipsoidal inclusions. The ellipsoidal microstructure is versatile
enough for us to comment on issues such as the role of aspect ratio of
heterogeneities and address the questions and observations highlighted
in the preceding section.3

2. A summary of homogenization theory for electrets

In this section, we present a very brief summary of the homoge-
nization theory for electrets presented by Liu and Sharma (2018). The
essential relations required to determine effective properties of electrets
are listed in this section without presenting the details. We refer the
reader to Liu and Sharma (2018) for further information.

2 See also Lefevre and Lopez-Pamies (2017) for a different take on the
homogenization of electrets.

3 We remark that several related aspects, which while of significant interest,
are beyond the scope of this paper, e.g. (i) stability and bifurcation of soft
electrets (Yang et al., 2017), (ii) use of enriched continuum theories (Sharma
and Dasgupta, 2002; Sharma, 2004; Lakes, 2016, 2015).
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2.1. Energy formulation

We follow the exact same notation as used by Liu and Sharma
(2018). The deformable elastic body of the electret in the reference
configuration is denoted by . The deformation 𝐲 and the nominal
olarization 𝐩 are two independent thermodynamic variables which
escribe the state of the system (𝐲,𝐩) ∶  → R3 ×R3. Material points in
he reference configuration are denoted by 𝐱. Gradient in the reference
resp. current) configuration is denoted by ∇ (∇𝐲). Also, deformation
radient tensor, Jacobian and the right Cauchy–Green deformation
ensor are denoted by 𝐅 = ∇𝐲, 𝐽 = det𝐅 and 𝐂 = 𝐅𝑇𝐅, respectively.
he electric potential is represented by 𝜉 ∶ 𝐷 → R. Dirichlet boundary
ondition has been applied to the whole boundary of the body 𝜕 :

= 𝜉𝑏 on 𝜕 and 𝐲 = 𝐱 + 𝐮𝑏 on 𝜕, (1)

here 𝜉𝑏 and 𝐮𝑏 are, respectively, prescribed electric potential and
isplacement on the boundary. Following convention is used for inner
roducts of tensors: for third order tensor 𝐀 and second order tensor 𝐁
e have 𝐀 ∶ 𝐁 = 𝐴𝑖𝑗𝑘𝐵𝑗𝑘𝐞𝑖, for forth order tensors 𝐀 and 𝐁 we have
𝐁 = 𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙𝑚𝑛(𝐞𝑖 ⊗ 𝐞𝑗 ⊗ 𝐞𝑚 ⊗ 𝐞𝑛) and for second order tensor 𝐀 and
ector 𝐚 we have 𝐀𝐚 = 𝐴𝑖𝑗𝑎𝑗𝐞𝑖.

The general form of the free energy of the system may be expressed
s

[𝐲,𝐩] = 𝑈 [𝐲,𝐩] + elect[𝐲,𝐩], (2)

here 𝑈 [𝐲,𝐩] is the internal energy of the dielectric material. elect[𝐲,𝐩]
s the electric energy and is given as (Liu, 2014)

elect[𝐲,𝐩] = ∫𝐲

𝜖0
2
| − ∇𝐲𝜉|

2 + ∫𝜕𝐲

𝜉𝑏𝐧𝐲 ⋅ (−𝜖0∇𝐲𝜉 + 𝐩∕𝐽 ), (3)

where 𝜖0 and 𝐧𝐲 are electric permittivity of the vacuum and unit normal
to the boundary in the current configuration, respectively. Also, 𝐲
denotes the body in the current configuration. The first term in Eq. (3)
is the total electric energy associated with the electric field and the
second term is the energy associated with boundary electrical devices.
Substituting Eq. (3) into Eq. (2) and representing electric energy in the
reference configuration, the free energy of the system can be written as

𝐹 [𝐲,𝐩] = ∫

[

𝛹 (∇𝐲,𝐩) +
𝜖0
2
∇𝜉 ⋅ 𝐽𝐂−1∇𝜉

]

d𝐱

+ ∫𝜕
𝜉𝑏𝐧 ⋅ (−𝜖0𝐽𝐂−1∇𝜉 + 𝐅−1𝐩),

(4)

here 𝛹 ∶ R3×3 × R3 → R is the internal energy density function
nd 𝐧 is the unit normal to the boundary. The equilibrium state of
he system is the state that minimizes free energy given in Eq. (4) and
lso satisfies the Maxwell’s equations. The Maxwell’s equations in the
eference configuration can be expressed as

⋅ (−𝜖0𝐽𝐂−1∇𝜉 + 𝐅−1𝐩 + 𝐅−1𝐩𝑒) = 𝜌𝑒, (5)

where 𝐩𝑒 and 𝜌𝑒 are external electric dipoles and charges, respectively.4
In order to obtain a linearized theory, we restrict ourselves to the
regime of small deformation and moderately small electric field:

∇𝐮 ∼ 𝜀 ≪ 1, 𝐩 ∼ 𝜀1∕2, (6)

where 𝐮(𝐱) = 𝐲(𝐱) − 𝐱 is the displacement. We introduce the recipro-
cal dielectric susceptibility tensors 𝝌 , the stiffness tensors C and the
lectrostriction tensor M as

= 𝜕2𝛹
𝜕𝐩𝜕𝐩

, C = 𝜕2𝛹
𝜕𝐅𝜕𝐅

, M = 1
2

𝜕3𝛹
𝜕𝐅𝜕𝐩𝜕𝐩

, (7)

here all derivatives have been evaluated at (𝐅,𝐩) = (𝐈, 𝟎). We refer the
reader to Liu and Sharma (2018) for the discussion on implication of

4 We remark that efficient approaches to solve the electrostatic Gauss
quation in all of space are discussed in Ref. Yang and Dayal (2011).
3

the principles of frame indifference and material symmetries on these
tensors. For isotropic materials C and M can be written as

C𝑖𝑗𝑘𝑙 = 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 , (8)

M𝑖𝑗𝑘𝑙 = 𝑚𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) + 𝑚𝜆𝛿𝑖𝑗𝛿𝑘𝑙 , (9)

where 𝜆 and 𝜇 are Lame constant and shear modulus of the material
nd 𝑚𝜇 and 𝑚𝜆 are the two electrostriction related parameters. Using
he Taylor series expansion and the scaling given in the Eq. (6), the free
nergy can be decomposed (Tian, 2008; Tian et al., 2012; Liu, 2014):

[𝐲,𝐩] = 𝐹 (0) + 𝐹 (1) + 𝐹 (2) + 𝑜(𝜀2), (10)

where 𝐹 (0) ∶= 𝐹 [𝐲 = 𝐱,𝐩 = 𝟎] and

𝐹 (1)[𝐩] = ∫

[ 1
2
𝐩 ⋅ 𝝌𝐩 +

𝜖0
2
|∇𝜉|2

]

d𝐱

+ ∫𝜕

[

𝜉𝑏𝐧 ⋅ (−𝜖0∇𝜉 + 𝐩 + 𝐩𝑒)
]

d𝐱 ∼ 𝜀,
(11)

(2)[𝐮,𝐩] = ∫

[

1
2
∇𝐮 ⋅ C∇𝐮 + ∇𝐮 ⋅M(𝐩⊗ 𝐩)

+ ∇𝐮 ⋅ 𝝈MW

]

d𝐱 ∼ 𝜀2,
(12)

where 𝝈MW is given as

𝝈MW = −
𝜖0
2
|∇𝜉|2𝐈 + 𝜖0∇𝜉 ⊗ ∇𝜉 − ∇𝜉 ⊗ 𝐩. (13)

e identify the forth order electrostrictive coupling tensor A as

𝑖𝑗𝑘𝑙 = (M)𝑖𝑗𝑘′𝑙′ (𝝌−1)𝑘𝑘′ (𝝌−1)𝑙𝑙′

+
𝜖0
2
T𝑖𝑗𝑘𝑙 +

1
2
[𝛿𝑖𝑘(𝝌−1)𝑗𝑙 + 𝛿𝑖𝑙(𝝌−1)𝑗𝑘],

(14)

here the fourth-order tensor T ∶ R3×3 → R3×3 is given as

T𝐅 = 𝐅 + 𝐅𝑇 − (Tr𝐅)𝐈 ∀𝐅 ∈ R3×3,

T𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 − 𝛿𝑖𝑗𝛿𝑘𝑙 .
(15)

We identify the dielectric tensor as 𝝐 = 𝜖0𝐈 + 𝝌−1. The dielectric
tensor and the electrostrictive coupling tensor for isotropic materials
are expressed as 𝝐 = 𝜖𝐈 and A = 𝜖

2T. We can use first of Eq. (11) to
write equilibrium equations of the system in terms of electric potential
and displacement:

∇ ⋅ (−𝝐∇𝜉 + 𝐩𝑒) = 𝜌𝑒 in  (16)

∇ ⋅ (C∇𝐮 + A (∇𝜉 ⊗ ∇𝜉)) = 𝟎 in  (17)

.2. Effective properties of the electrets

We assume electrostatic body of the electret  has a periodic
icrostructure (see Fig. 2). The rescaled unit cell (or RVE) of the

omposite is denoted by 𝑌 = (0, 1)3 ⊂ . We identify fast variables 𝐱̃ =
∕𝛿, where 𝛿 is the scaling parameter 𝛿 reflects the fine microstructure
f the composite as compared with the macroscopic length-scale of the
omain . For a domain , −∫

denotes the average of the integrand on
. Dielectric tensor, stiffness tensor and electrostrictive coupling tensor
re assumed to be 𝑌 -periodic functions:

𝝐(𝛿)(𝐱),C(𝛿)(𝐱),A(𝛿)(𝐱)
)

=
(

𝝐#
(

𝐱̃
)

,C#
(

𝐱̃
)

,A#
(

𝐱̃
))

, (18)

where 𝐱̃ = 𝐱
𝛿 is the fast variable.

2.2.1. Effective stiffness and effective electric permittivity tensor
We identify the effective electric permittivity tensor 𝝐eff, the effec-

tive stiffness tensor Ceff and the effective electrostrictive tensor Aeff

as (Tian et al., 2012; Tian, 2008)

𝝐eff𝐞̄ = −
∫𝑌

[𝝐#(𝐱̃)(−∇𝜉𝐞̄)] for 𝐞̄ ∈ R3, (19)

Ceff𝐇̄ = − [C#(𝐱̃)(∇𝐮𝐇̄)] for 𝐇̄ ∈ R3×3, (20)
∫𝑌
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∫

∫

Fig. 2. A schematic of a periodic microstructure. The color in each unit cell could be
heterogeneities or external, immobile positive and negative charges.

𝐇̄ ⋅ Aeff(𝐞̄⊗ 𝐞̄) =

−
𝑌
[∇𝐮𝐇̄ ⋅ A#(𝐱̃)(∇𝜉𝐞̄ ⊗ ∇𝜉𝐞̄)] for (𝐞̄, 𝐇̄) ∈ R3 × R3×3, (21)

where the electric potential 𝜉𝐞̄ ∈ 𝐞̄ and 𝐮𝐇̄ ∈ 𝐇̄ satisfy unit cell
equilibrium equations

div[𝝐#(𝐱̃)(−∇𝜉𝐞̄)] = 0, (22)

div[C#(𝐱̃)(∇𝐮𝐇̄)] = 𝟎. (23)

Also, admissible spaces 𝐞̄ and 𝐇̄ are defined as

𝐞̄ ≡
{

𝜉 ∶ −−∫𝑌
∇𝜉 = 𝐞̄ and ∇𝜉 is Y-periodic

}

(24)

𝐇̄ ≡
{

𝐮 ∶ −
∫𝑌

∇𝐮 = 𝐇̄ and ∇𝐮 is Y-periodic
}

. (25)

2.2.2. Multiscale analysis and effective piezoelectric tensor
We represent microstructural distribution of external dipoles and

charges by (𝐩(𝛿), 𝜌𝛿). We assume a periodic distribution for external
charges and dipoles inside the material:

(𝐩(𝛿), 𝜌𝛿) =
(

𝐩̄ + 𝐩#(
𝐱
𝛿
), 𝜌̄ + 1

𝛿
𝜌#(

𝐱
𝛿
)
)

, (26)

where 𝐩# and 𝜌# are 𝑌 -periodic functions:

−
𝑌
(𝐩#, 𝜌#) = 0. (27)

Existence of external charges and/or dipoles will lead to a piezo-
electric effect in electret materials. We use multiscale analysis based on
the method of two-scale convergence (Cioranescu and Donato, 1999;
Milton, 2002) in order to define the effective piezoelectric tensor.
Using scaling discussed earlier, electrostatic problem is decoupled from
elasticity. Thus, we perform multi-scale analysis on the electrostatic
equilibrium equation first. The local electric field can be determined
by solving
{

div[−𝜖(𝛿)∇𝜉(𝛿) + 𝐩(𝛿)] = 𝜌(𝛿) in ,
𝜉(𝛿) = 𝜉𝑏 on 𝜕.

(28)

The goal of current theory is to analyze the behavior of the material in
the limit 𝛿 → 0. Following the formal procedure of multiscale analysis,
the solution to Eq. (28) is given as

𝜉(𝛿)(𝐱) = 𝜉(0)(𝐱, 𝐱̃) + 𝛿𝜉(1)(𝐱, 𝐱̃) +⋯ , (29)
4

where 𝐱̃ ↦ 𝜉(𝑖)(𝐱, 𝐱̃) is Y-periodic for all 𝑖 and −
∫𝑌

𝜉(𝑖) = 0 if 𝑖 ≠ 0.
Using chain rule we can rewrite gradient and divergence operators as
∇ → ∇𝐱 +

1
𝛿∇𝐱̃ and div → div𝐱 +

1
𝛿 div𝐱̃. It can be proved that the first

order of the solution (29) is independent of the fast variable 𝐱̃ = 𝐱
𝛿 and

can be determined from following equation
{

div𝐱
(

−𝝐eff∇𝐱𝜉(0) + 𝜒𝐷(𝐩̄ + 𝐝̄′)
)

= 𝜌̄ in ,
𝜉(0) = 𝜉𝑏 on 𝜕,

(30)

where 𝜒𝐷 = 1 on 𝐷 and 𝜒𝐷 = 0 otherwise. Also, 𝐝̄′ is defined as

𝐝̄′ = −
∫𝑌

𝝐#(−∇𝐱̃𝜉
′), (31)

and 𝜉′ ∈ 0 and is a solution to the following equation

div𝐱̃[𝝐#(𝐱̃)(−∇𝐱̃𝜉
′) + 𝐩#] = 𝜌# in Y. (32)

The Eq. (32) is the key equation in the calculation of the effective
piezoelectric tensor; which we will use later. Also, 𝜉′ can be related
to 𝜉(1) defined in the Eq. (29). For more details, reader is referred to
the Liu and Sharma (2018).

Next, we can analyze the elasticity problem using a similar proce-
dure as we used for the electrostatic problem. The mechanical equilib-
rium equation is expressed as
{

div[C(𝛿)∇𝐮(𝛿) + A(𝛿)∇𝜉(𝛿) ⊗ 𝜉(𝛿)] = 0, in 
𝐮(𝛿) = 𝐮𝑏 on 𝜕

(33)

The solution to above equation can be written as

𝐮(𝛿)(𝐱) = 𝐮(0)(𝐱, 𝐱̃) + 𝛿𝐮(1)(𝐱, 𝐱̃) +⋯ , (34)

where 𝐮(𝑖)(𝐱, 𝐱̃) is Y-periodic for all 𝑖 and −
∫𝑌

𝐮(𝑖) = 0 if 𝑖 ≠ 0. We identify
𝐮′1 ∈ 0 which satisfies

div𝐱̃
[

C#(𝐱̃)∇𝐱̃𝐮′1 + 2A#(𝐱̃)(∇𝐱̃𝜉
′ ⊗ ∇𝐱̃𝜉𝐞̄)

]

= 0. (35)

It can be shown that the macroscopic displacement 𝐮(0) is independent
of the fast variable (𝐮(0) = 𝐮(0)(𝐱)). The boundary value problem for the
macroscopic displacement 𝐮(0) is given as
{

div𝐱𝝈 = 0, in 𝐷,
𝐮(0) = 𝐮𝑏 on 𝜕𝐷,

(36)

where the total stress 𝝈 is defined as

𝝈 ≡ Ceff∇𝐱𝐮(0) − Beff∇𝐱𝜉
(0) + Aeff(∇𝐱𝜉

(0) ⊗ ∇𝐱𝜉
(0)) + 𝝈0. (37)

The second order tensor 𝝈0 is independent of the average electric field
and strain. The definition of the tensor 𝝈0 is available in Liu and Sharma
(2018). Also, Beff is the effective piezoelectric tensor and is defined as

Beff𝐞̄ = −
∫𝑌

[C#(𝐱̃)∇𝐱̃𝐮′1 + 2A#(𝐱̃)(∇𝐱̃𝜉
′ ⊗ ∇𝐱̃𝜉𝐞̄)]. (38)

3. Effective piezoelectric properties of an electret with ellipsoidal
inclusion

In this section, we use the theory presented earlier to obtain the
effective piezoelectric properties of an electret with ellipsoidal inclu-
sion. The unit cell of the material is shown in Fig. 3. We assume both
matrix and inclusion are homogeneous isotropic materials. We identify
the unit cell by 𝑌 and the inclusion is represented by 𝛺. We denote
the stiffness tensor for the matrix (resp. inclusion) by C𝑚 (resp. C𝑝).
Also, we represent the electric permittivity the tensor of the matrix and
inclusion with 𝝐𝑚 = 𝜖𝑚𝐈 and 𝝐𝑝 = 𝜖𝑝𝐈, respectively. We assume that there
exist a nonzero uniform polarization 𝐩𝑠 inside the inclusion.

In order to determine the piezoelectric tensor for the ellipsoidal
microstructure, first we need to solve electrostatic Eqs. (32) and (22).
Introducing the variable 𝜒 (resp. 𝜒 ) such that 𝜒 = 1 (resp. 𝜒 = 1)
𝑝 𝑚 𝑝 𝑚
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Fig. 3. The schematic of the electret material with ellipsoidal inclusions.

for 𝑥 ∈ 𝛺 (resp. 𝑥 ∈ 𝑌 ∕𝛺) and 𝜒𝑝 = 0 (resp. 𝜒𝑚 = 0) otherwise, we
rewrite these two equations as

div[−(𝜖𝑚𝜒𝑚 + 𝜖𝑝𝜒𝑝)∇𝜉′ + 𝐩𝑠𝜒𝑝] = 0 in 𝑌 , (39)

div[−(𝜖𝑚𝜒𝑚 + 𝜖𝑝𝜒𝑝)∇𝜉𝐞̄] = 0 in 𝑌 , (40)

where

−
𝑌
∇𝜉′ = 𝟎, −

∫𝑌
∇𝜉𝐞̄ = −𝐞̄. (41)

After we solve electrostatic equations (39) and (40), we need to solve
elasticity equation (35) which can be rewritten as

div
(

(C𝑝𝜒𝑝 + C𝑚𝜒𝑚)∇𝐮′ + 𝝈(𝑒)) = 𝟎, (42)

where here we have dropped the subscript 1 from 𝐮′1 for brevity. Also,
we identify 𝝈(𝑒) as

𝝈(𝑒) = 𝜖#T(∇𝜉′ ⊗ ∇𝜉𝐞̄). (43)

Effective dielectric tensor is defined as

𝝐eff𝐞̄ = −−∫𝑌
𝜖#∇𝜉𝐞̄ (44)

Once we have determined 𝜉′, 𝜉𝐞̄ and 𝐮′ we can obtain the effective
piezoelectric tensor using

Beff𝐞 = −
∫𝑌

[

C#∇𝐮′ + 𝝈(𝐞̄)] . (45)

3.1. Solution to electrostatic problems

The solution for Eqs. (39) and (40) is obtained by solving the
following equation for the ellipsoidal inclusion:

div(−∇𝜓̂𝐦 +𝐦𝜒𝑝) = 0 (46)

where 𝐦 ∈ R3 is a constant vector and ∇𝜓̂𝐦 → 𝟎 at the infinity. In
order to obtain solution for Eq. (46), we express 𝜓̂𝐦 and 𝐦 in terms of
their Fourier transforms 𝜓̄𝐦 and 𝐦̄, respectively:

̂𝐦 = ∫R3
𝜓̄𝐦(𝐤)exp (𝑖𝐤 ⋅ 𝐱)d𝐤, (47)

𝐦 = 𝐦̄(𝐤)exp (𝑖𝐤 ⋅ 𝐱)d𝐤. (48)
5

∫R3
Substituting Eqs. (48) and (47) into (46), we have

∫R3

(

𝜓̄𝐦𝑘𝑖𝑘𝑖 + 𝑖𝑚̄𝑗𝑘𝑗
)

exp (𝑖𝐤 ⋅ 𝐱) = 0. (49)

Thus, 𝜓̄𝐦 can be determined as

̄𝐦 = −
𝑖𝑘𝑗 𝑚̄𝑗
𝑘𝑖𝑘𝑖

. (50)

Now consider the Green’s function 𝐺(𝐱 − 𝐱′) as

𝐺(𝐱 − 𝐱′) = 1
4𝜋

1
|𝐱 − 𝐱′|

. (51)

The Green’s function 𝐺(𝐱 − 𝐱′) is expressed in terms of its Fourier
transform 𝐺̄(𝐤) as (Hiroshi and Minoru, 1986; Li and Wang, 2008)

𝐺(𝐱 − 𝐱′) = ∫R3
𝐺̄(𝐤)exp

(

𝑖𝐤 ⋅ (𝐱 − 𝐱′)
)

d𝐤, (52)

where

𝐺̄(𝐤) = 1
(2𝜋)3

1
𝑘𝑖𝑘𝑖

. (53)

Substituting Eq. (50) into Eq. (47) and using Eq. (53) we have:

𝐦̂ = −(2𝜋)3 ∫R3
𝐺,𝑗 𝑚̄𝑗exp (𝑖𝐤 ⋅ 𝐱)d𝐤, (54)

where 𝐺,𝑗 is the Fourier transform of 𝐺,𝑗 where throughout this paper
subscript ‘‘,’’ means partial derivative. For example, 𝐺,𝑗 = 𝜕𝐺

𝜕𝑥𝑗
. Using

convolution theorem we can rewrite (54) as (Li and Wang, 2008)

𝐦̂ = −∫𝛺
𝐺,𝑗 (𝐱 − 𝐱′)𝑚𝑗d𝐱′. (55)

We identify function 𝛷(𝐱) = ∫𝛺
1

|𝐱−𝐱′|d𝐱
′. For constant 𝐦 and using

Eqs. (55) and (51), we express ∇𝜓𝐦 as

∇𝜓𝐦 = 𝐐𝐦 for 𝑥 ∈ 𝑌 , (56)

where 𝑄𝑖𝑗 = − 1
4𝜋𝛷,𝑖𝑗 . We introduce following elliptic integrals:

𝐼(𝑠) = 2𝜋𝑎1𝑎2𝑎3 ∫

∞

𝑠

d𝑠
𝛥(𝑠)

, (57)

𝐼𝑖(𝑠) = 2𝜋𝑎1𝑎2𝑎3 ∫

∞

𝑠

d𝑠
(𝑎2𝑖 + 𝑠)𝛥(𝑠)

, (58)

𝐼𝑖𝑗 (𝑠) = 2𝜋𝑎1𝑎2𝑎3 ∫

∞

𝑠

d𝑠
(𝑎2𝑖 + 𝑠)(𝑎

2
𝑗 + 𝑠)𝛥(𝑠)

, (59)

where

𝛥(𝑠) =
√

(𝑎21 + 𝑠)(𝑎
2
2 + 𝑠)(𝑎

2
3 + 𝑠). (60)

Components of 𝑄𝑖𝑗 for elliptical inclusion with principal semi-axes 𝑎1,
𝑎2 and 𝑎3 can be determined as (Hiroshi and Minoru, 1986; Mura, 2013)

𝑄𝑖𝑗 = 𝑄−
𝑖𝑗 =

1
4𝜋

(

𝛿𝑖𝑗𝐼𝐼 (0)
)

for 𝑥 ∈ 𝛺, (61)

𝑄𝑖𝑗 (𝐱) = 𝑄+
𝑖𝑗 =

1
4𝜋

(

𝛿𝑖𝑗𝐼𝐼 (𝑠) − 𝑥𝑖𝐼𝐼,𝐽
)

for 𝑥 ∈ R3∕𝛺, (62)

where the following summation convention has been used: repeated
lower case indices are summed up from 1 to 3; upper case indices take
on the same numbers as the corresponding lower case ones but are not
summed. As well known, for elliptical inclusions in an in finite linear
media, the electric field inside the inclusion is a constant (Liu, 2008;
Eshelby, 1957). Also, the elliptical integrals (57), (58) and (59) can be
explicitly determined for several kinds of ellipsoid. Here, in this paper,
we consider a prolate spheroid with radii 𝑎1, 𝑎2 and 𝑎3 along 𝑥1, 𝑥2
and 𝑥3 directions, respectively (see Fig. 3). For prolate spheroid with
𝑎2 = 𝑎3 < 𝑎1, the components of 𝐐 tensor for interior points (𝐐−) can
be determined substituting Eq. (57) into Eq. (61) :

𝐐− = 𝑄−
11𝐞1 ⊗ 𝐞1 +𝑄−

22𝐞2 ⊗ 𝐞2 +𝑄−
33𝐞3 ⊗ 𝐞3, (63)

where {𝐞1, 𝐞2, 𝐞3} represents the coordinate system and

𝑄− = 𝑄− =
33 22
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𝐭
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a

𝑝
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E

d

U
a

𝐮
(

𝑎23𝑎1
2(𝑎21 − 𝑎

2
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3∕2
×
⎡

⎢

⎢

⎣

𝑎1
𝑎3

(

𝑎21
𝑎23

− 1

)1∕2

− cosh−1 𝑎1
𝑎3

⎤

⎥

⎥

⎦

, (64)

𝑄−
11 = 1 − 2𝑄−

22. (65)

lso, using jump conditions, the solution on the outer surface of the
nclusion can be determined in terms of the solution inside the inclusion
s

𝜓̂𝐦|𝜕𝛺+ = 𝐐−𝐦 − (𝐧 ⋅𝐦)𝐧. (66)

aving the solution (56) for Eq. (46), we can determine ∇𝜉′ and ∇𝜉𝐞̄.
e introduce 𝐦1 and 𝐦2 as

1 = [𝜖𝑚𝐈 + (𝜖𝑝 − 𝜖𝑚)𝐐−]−1𝐩𝑠, (67)

2 = (𝜖𝑝 − 𝜖𝑚)[𝜖𝑚𝐈 + (𝜖𝑝 − 𝜖𝑚)𝐐−]−1𝐞̄. (68)

y setting 𝐦 = 𝐦1 and 𝐦 = 𝐦𝟐 in Eq. (46), the electric fields ∇𝜉′ and
𝜉𝐞̄ can be determined respectively. The solution to Eqs. (39) and (40)

s given as

𝜉′ = ∇𝜓̂𝐦1
, (69)

𝜉𝐞̄ = −𝐞̄ + ∇𝜓̂𝐦2
. (70)

In order to determine piezoelectric coefficient defined in the
q. (45), we need to calculate −

∫𝑌
𝝈(𝐞̄). We have

𝑌
𝝈(𝐞̄) = (1 − 𝜃)−∫𝑌 ∕𝛺

𝝈(𝐞̄) + 𝜃−∫𝛺
𝝈(𝐞̄), (71)

he second term on the right hand side of Eq. (71) can be simply
etermined substituting Eqs. (56), (69) and (70) into Eq. (71):

−
∫𝛺

𝝈(𝐞̄) = −𝜃𝜖𝑝T
(

𝐐−𝐦1 ⊗ 𝐞̄
)

+ 𝜃T𝜖𝑝
(

𝐐−𝐦1 ⊗𝐐−𝐦2
)

. (72)

As the values of the components of the tensor 𝐐 are not constant for
the points located outside the inclusion, it is difficult to determine the
first integral on the right hand side of the Eq. (71). Obtaining explicit
relations for the effective piezoelectric tensor will not be possible unless
we express all volume integrals in terms of the solutions obtained for
electric fields inside the inclusion. Therefore, from Eq. (41), we write

−
𝑌 ∕𝛺

∇𝜉′ = −𝜃
1 − 𝜃

−
∫𝛺

∇𝜉′ = −𝜃
1 − 𝜃

𝐐−𝐦1, (73)

𝑌 ∕𝛺
∇𝜉𝐞̄ =

1
1 − 𝜃

(

−𝐞̄ − 𝜃−∫𝛺
∇𝜉𝐞̄

)

= −𝐞̄ − 𝜃
1 − 𝜃

𝐐−𝐦2. (74)

e introduce ∇𝜉(1)𝐞̄ and ∇𝜉′(1) such that

𝜉𝐞̄ =
(

−
∫𝑌 ∕𝛺

∇𝜉𝐞̄

)

+ ∇𝜉(1)𝐞̄ for 𝐱 ∈ 𝑌 ∕𝛺, (75)

𝜉′ =
(

−
∫𝑌 ∕𝛺

∇𝜉′
)

+ ∇𝜉′(1) for 𝐱 ∈ 𝑌 ∕𝛺, (76)

here

𝑌 ∕𝛺
∇𝜉′(1) = 𝟎, −

∫𝑌 ∕𝛺
∇𝜉(1)𝐞̄ = 𝟎. (77)

ubstituting Eqs. (75) and (76) into Eq. (71), we have

1 − 𝜃)−∫𝑌 ∕𝛺
𝝈(𝐞̄) = (1 − 𝜃)𝜖𝑚−∫𝑌 ∕𝛺

T
(

∇𝜉′(1) ⊗ ∇𝜉(1)𝐞̄

)

+

1 − 𝜃)𝜖𝑚T
([

−
∫𝑌 ∕𝛺

∇𝜉′
]

⊗
[

−
∫𝑌 ∕𝛺

∇𝜉𝐞̄

])

.
(78)

e can ignore the first term on the right hand side of the Eq. (78) and
ewrite this equation as

1 − 𝜃)−∫𝑌 ∕𝛺
𝝈(𝐞̄) ≈

1 − 𝜃)𝜖𝑚T
([

− ∇𝜉′
]

⊗
[

− ∇𝜉𝐞̄

])

.
(79)
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∫𝑌 ∕𝛺 ∫𝑌 ∕𝛺
ubstituting (79), (72), (74) and (73) into (71), we have

𝑌
𝝈(𝐞̄) = 𝜃(𝜖𝑚 − 𝜖𝑝)T

(

𝐐−𝐦1 ⊗ 𝐞̄
)

+ 𝜃
( 𝜃
1 − 𝜃

𝜖𝑚 + 𝜖𝑝
)

T
(

𝐐−𝐦1 ⊗𝐐−𝐦2
)

(80)

Eq. (80) can be expressed in terms of 𝝐eff, 𝜖𝑚, 𝜖𝑝 and 𝜃. In order to do
so, we rewrite Eq. (44) as

− −
∫𝑌
𝜖#∇𝜉𝐞̄ = −−∫𝑌

(

𝜖𝑚 − 𝜒𝑝(𝜖𝑚 − 𝜖𝑝)
)

∇𝜉𝐞̄ = 𝝐eff𝐞̄. (81)

herefore, from (56), (69) and (70) we have

−𝐦2 =
1

𝜃(𝜖𝑚 − 𝜖𝑝)
(

𝝐eff − 𝜖𝑚𝐈 + 𝜃(𝜖𝑚 − 𝜖𝑝)𝐈
)

𝐞̄, (82)

−𝐦1 = − 1
𝜃(𝜖𝑚 − 𝜖𝑝)2

(

𝝐eff − 𝜖𝑚𝐈 + 𝜃(𝜖𝑚 − 𝜖𝑝)𝐈
)

𝐩𝑠. (83)

Substituting Eqs. (82) and (83) into (80), the average stress −
∫𝑌

𝝈(𝐞̄) is

expressed in terms of 𝝐eff, 𝜖𝑚, 𝜖𝑝 and 𝜃:

−
𝑌
𝝈(𝐞̄) = − 1

𝜖𝑚 − 𝜖𝑝
T
[(

𝝐∗𝐩𝑠
)

⊗ 𝐞̄
]

−
( 𝜃
1 − 𝜃

𝜖𝑚 + 𝜖𝑝
) 1
𝜃(𝜖𝑚 − 𝜖𝑝)3

T
{(

𝝐∗𝐩𝑠
)

⊗
(

𝝐∗𝐞̄
)}

,
(84)

here

∗ =
(

𝝐eff − 𝜖𝑚𝐈 + 𝜃(𝜖𝑚 − 𝜖𝑝)𝐈
)

. (85)

.2. Elasticity problem

Next, we consider the elastic unit-cell problem (42). The source term
(𝐞̄) physically can be interpreted as an eigenstress induced by electric

ields. It clear that the eigenstress 𝝈(𝐞̄) is uniform inside 𝛺 since ∇𝜉′

nd ∇𝜉𝐞̄ are both uniform on 𝛺. Further, since 𝜉′,𝑗𝑗 = 0 and 𝜉𝐞̄,𝑗𝑗 = 0 in
3 ⧵𝛺, we find that
(𝐞̄)
𝑖𝑗,𝑗 =𝜖𝜉

′
,𝑖𝑗 (𝜉𝐞̄),𝑗𝜖𝜉

′
,𝑗 (𝜉𝐞̄),𝑖𝑗

− 𝜖𝜉′,𝑗𝑖𝑗 (𝜉𝐞̄),𝑗 − 𝜖𝜉
′
,𝑗 (𝜉𝐞̄),𝑗𝑖 = 0 in R3 ⧵𝛺.

(86)

herefore, Maxwell stress is divergence free if restricted to interior or
xterior of 𝛺. Jump on the Maxwell stress over the surface of ellipsoid
an be determined substituting Eqs. (66), (69), (70) to (43):

(𝐞̄) ∶= [[𝝈(𝐞̄)]]𝐧 = 𝝈∗𝐧 + 𝑝∗𝐧, (87)

here

∗ = (𝜖𝑚 − 𝜖𝑝)T
[

(𝐐−𝐦1)⊗ (−𝐞̄ +𝐐−𝐦2)
]

− 𝜖𝑚
[

(−𝐞̄ +𝐐−𝐦2)⊗𝐦1 + (𝐐−𝐦1 ⊗𝐦2)
]

, (88)

nd

∗ = 𝜖𝑚(𝐦1 ⋅ 𝐧)(𝐦2 ⋅ 𝐧). (89)

f there exist both elastic and dielectric contrast, we need to solve
q. (42). We rewrite this equilibrium equation as

iv
(

C𝑚∇𝐮′ − 𝜒𝑝(C𝑚 − C𝑝)∇𝐮′ + 𝝈(𝐞̄)) = 𝟎. (90)

sing Eq. (87), the solution to equilibrium equation (90) is given
s (Sharma, 2004)

′(𝐱) = −∫𝛺

[

∇𝐱𝐆elast(𝐱 − 𝐱′) ∶

𝝈∗ + (C𝑚 − C𝑝)
(

∇𝐱𝐮′(𝐱)
)

) ]

d𝐱′

+ [𝐆elast(𝐱 − 𝐱′)𝐧∗(𝐱′)𝑝∗]d𝐱′,

(91)
∫𝜕𝛺
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where 𝐆elast(𝐱 − 𝐱′) is the elasticity greens function for isotropic mate-
ials and is given as

elast(𝐱 − 𝐱′) = 1
16𝜋𝜇𝑚(1 − 𝜈𝑚)|𝐱 − 𝐱′|

×
(

(3 − 4𝜈𝑚)𝛿𝑖𝑗 +
(𝑥𝑖 − 𝑥′𝑖)(𝑥𝑗 − 𝑥

′
𝑗 )

|𝐱 − 𝐱′|2

)

(𝐞𝑖 ⊗ 𝐞𝑗 ),
(92)

where 𝜇𝑚 and 𝜈𝑚 are shear modulus and Poisson’s ratio of the matrix
material. It is not easily possible to solve Eq. (91) for 𝐮′ analytically.
This is because existence of the term containing surface integral. This
problem is equivalent of the conventional inclusion problem with
nonuniform eigenstrain. In order to simplify this equation, we replace
𝑝∗ with ⟨𝑝∗⟩ = 1

𝑆 ∫𝜕𝛺 𝑝
∗d𝑆, where 𝑆 is the surface area of the inclusion.

Therefore, we identify 𝜮∗ = (𝝈∗ + ⟨𝑝∗⟩𝐈) and write Eq. (87) as

𝐭(𝐞̄) ≈ 𝜮∗𝐧 =
[

𝝈∗ + 𝜖𝑚
(

(𝐦1 ⊗𝐦2) ∶ (N)
)]

𝐧, (93)

where the tensor N is defined as

N = 1
𝑆 ∫𝜕𝛺

[𝑛𝑖𝑛𝑗𝐞𝑖 ⊗ 𝐞𝑗 ]d𝑆. (94)

For the ellipsoidal inclusion with principal semi-axes 𝑎1, 𝑎2 and 𝑎3
aligned along 𝐞1, 𝐞2 and 𝐞3 directions, the components of N are deter-
mined as (Rosenkilde, 1967)

N = 1
𝑆
2𝜋(𝑎1𝑎2𝑎3)2 ∫

∞

0

𝛿𝑖𝑗 (𝐞𝑖 ⊗ 𝐞𝑗 )

(𝑎2𝐼 + 𝑡
2)𝛥

d𝑡, (95)

here summation convention is suppressed for upper case indices and

=
√

(𝑎21 + 𝑡
2)(𝑎22 + 𝑡

2)(𝑎23 + 𝑡
2). (96)

For a prolate spheroid with 𝑎1 = 𝑎2 and 𝑎3 > 𝑎1, we have

N = 𝑁11𝐞1 ⊗ 𝐞1 +𝑁22𝐞2 ⊗ 𝐞2 +𝑁33𝐞3 ⊗ 𝐞3, (97)

where

𝑁33 = 𝑁22 =
2
𝑆
𝜋(𝑎1𝑎2𝑎3)2 ×

√

1 − 𝑘2

2𝑎43𝑘
2

×

[

√

1 − 𝑘2 − (1 − 2𝑘2) sin
−1𝑘
𝑘

]

, (98)

11 =
2
𝑆
𝜋(𝑎1𝑎2𝑎3)2 ×

√

1 − 𝑘2

𝑎41𝑘
2

[

sin−1𝑘
𝑘

−
√

1 − 𝑘2
]

, (99)

and 𝑘2 = 1 − ( 𝑎3𝑎1
)2. Therefore, substituting Eq. (93) into Eq. (90) we

ave

iv
(

C𝑚∇𝐮′ − 𝜒𝑝(C𝑚 − C𝑝)∇𝐮′ −𝜮∗) = 𝟎. (100)

The solution for (100) is given as

𝐮′(𝐱) = −∫𝛺

[

∇𝐱𝐆elast(𝐱 − 𝐱′) ∶
(

𝜮∗ + (C𝑚 − C𝑝)
(

∇𝐱𝐮′(𝐱)
)

) ]

d𝐱′.
(101)

In order to obtain the solution of the Eq. (101), we define the fourth
order auxiliary tensor S as

S = −1
2
(𝐞𝑖 ⊗ 𝐞𝑛 ⊗ 𝐞𝑗 ⊗ 𝐞𝑝)

(

∫𝛺

[

𝜕2𝐺elast
𝑖𝑗 (𝐱 − 𝐱′)
𝜕𝑥𝑝𝜕𝑥𝑛

+
𝜕2𝐺elast

𝑛𝑗 (𝐱 − 𝐱′)
𝜕𝑥𝑝𝜕𝑥𝑖

]

d𝐱′
)

.
(102)

he tensor S can be related to so-called Eshelby tensor SE by SE = SC
r

C−1)𝑞𝑟𝑚𝑛(SE)𝑖𝑗𝑚𝑛 =
1
2
(

(S)𝑖𝑗𝑞𝑟 + (S)𝑖𝑗𝑟𝑞
)

. (103)

It is obvious that tensor S does not satisfy one of the minor symmetries.
Similar to the Eshelby tensor SE, the components of the auxiliary tensor

can be determined for ellipsoidal inclusion by substituting Eq. (92)
7

nto Eq. (102). Reader is referred to the textbooks Mura (2013) and Li
nd Wang (2008) for details of the integration of the relation (102)
or elliptical inclusions. We have calculated the tensor S and listed its

components in the Appendix. It should be mentioned that, throughout
this paper, we define F−1 as the inverse of an arbitrary fourth order
tensor F if (F−1)𝑖𝑗𝑘𝑙 = (F−1)𝑗𝑖𝑘𝑙 = (F−1)𝑖𝑗𝑙𝑘 and (F−1)𝑖𝑗𝑘𝑙(F)𝑘𝑙𝑚𝑛𝑚𝑛 = 𝑖𝑗
or any symmetric 𝑖𝑗 .

Substituting Eq. (102) in to Eq. (101), the linear strain 𝜺′ = 1
2 (∇𝐮

′+
(∇𝐮′)𝑇 ) can be written as

𝜺′ = S
(

𝜮∗ + (C𝑚 − C𝑝)𝜺′
)

. (104)

Using the definition given for the inverse of fourth order tensors, the
strain 𝜺′ is determined as

𝜺′ = (C𝑝 − C𝑚 + S−1)−1𝜮SYM, (105)

where

𝜮SYM = 1
2
(

𝜮∗ + (𝜮∗)𝑇
)

+ 1
2
S−1 S

(

𝜮∗ − (𝜮∗)𝑇
)

. (106)

3.3. Effective elastic and piezoelectric properties

In this section, we determine the effective stiffness tensor Ceff and
the effective piezoelectric tensor Beff for the material shown in Fig. 3.
In order to determine effective stiffness tensor defined in the Eq. (20),
we need to solve Eq. (23). The Eq. (23) can be written in following
fashion

div
(

C𝑚∇𝐮𝐇̄ − 𝜒𝑝(C𝑚 − C𝑝)∇𝐮𝐇̄
)

= 𝟎, (107)

where −
∫𝑌

∇𝐮𝐇̄ = 𝐇̄. We define 𝐮′
𝐇̄

such that ∇𝐮′
𝐇̄
= ∇𝐮𝐇̄ − 𝐇̄. Thus, from

Eq. (107), ∇𝐮′
𝐇̄

can be determined solving following equation:

div
(

C#∇𝐮′𝐇̄ − 𝜒𝑝(C𝑚 − C𝑝)𝐇̄
)

= 𝟎. (108)

As 𝐇̄ is arbitrary, we set (C𝑚 −C𝑝)𝐇̄ = 𝜮SYM. Substituting this relation
into Eq. (108) yields

div
(

C#∇𝐮′𝐇̄ − 𝜒𝑝𝜮SYM
)

= 𝟎. (109)

The solution to (109) is given as

1
2

(

∇𝐮′𝐇̄ + ∇𝐮′𝑇𝐇̄
)

=
(

C𝑝 − C𝑚 + S−1
)−1 𝜮SYM. (110)

Substituting the solution (110) in to the definition (20), a linear equa-
tion for effective stiffness tensor is derived as

Ceff𝐇̄ = −
∫𝑌

C#∇𝐮𝐇̄ = −
∫𝑌

[C#(∇𝐮′𝐇̄ + 𝐇̄)] =

C̄𝐇̄ + 𝜃(C𝑝 − C𝑚)
(

C𝑝 − C𝑚 + S−1
)−1 𝜮SYM,

(111)

where C̄ = −
∫𝑌

C. From Eq. (111), the effective stiffness tensor is
determined as

Ceff = C̄ + 𝜃(C𝑝 − C𝑚)
(

C𝑝 − C𝑚 + S−1
)−1 (C𝑚 − C𝑝). (112)

Substituting Eq. (105) into Eq. (45), the effective piezoelectric
tensor can be written as

Beff𝐞 = −
∫𝑌

[

𝝈(𝐞̄)] + 𝜃−∫𝛺
[(C𝑝 − C𝑚)∇𝐮′] =

−
𝑌

[

𝝈(𝐞̄)] + 𝜃(C𝑝 − C𝑚)
(

C𝑝 − C𝑚 + S−1
)−1 𝜮SYM.

(113)

From Eq. (112) we have

Beff𝐞 =

= −
[

𝝈(𝐞̄)] + (Ceff − C̄)(C𝑚 − C𝑝)−1𝜮SYM.
(114)
∫𝑌
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Substituting Eq. (84) into (114), we obtain a linear set of equations
which can be trivially solved to determine each component of the
piezoelectric tensor Beff

Beff𝐞 = (Ceff − C̄)(C𝑚 − C𝑝)−1𝜮SYM

− 1
𝜖𝑚 − 𝜖𝑝

T
[(

𝝐∗𝐩𝑠
)

⊗ 𝐞̄
]

−
( 𝜃
1 − 𝜃

𝜖𝑚 + 𝜖𝑝
) 1
𝜃(𝜖𝑚 − 𝜖𝑝)3

T
{(

𝝐∗𝐩𝑠
)

⊗
(

𝝐∗𝐞̄
)}

.

(115)

The Eq. (115) gives us a linear set of equations which can simply
be solved to determine each component of the piezoelectric tensor
Beff. The effective piezoelectric tensor depends on the effective electric
permittivity tensor 𝝐eff and effective stiffness tensor Ceff which can be
etermined using Eqs. (82) and (112), respectively. It is clear from
q. (115) that the effective piezoelectric tensor linearly depends on the
esidual polarization 𝐩𝑠. Also, from Eqs. (80) and (113), it is obvious
hat existence of elastic mismatch or dielectric mismatch is necessary
ondition to have a non-zero piezoelectric coefficient. The effective
iezoelectric tensor Beff relates electric field to stress and vice versa
see the relation (37)). We can define third order piezoelectric tensor
ff which can be used to relate electric field to strain and vice versa.
he piezoelectric tensor 𝐝eff is defined as

(C)eff
𝑖𝑗𝑘𝑙(𝐝

eff)𝑚𝑘𝑙 = (Beff)𝑖𝑗𝑚 (116)

r

𝐝eff)𝑚𝑖𝑗 = −((Ceff)−1)𝑖𝑗𝑘𝑙(Beff)𝑘𝑙𝑚. (117)

n what follows, we will use contracted notation and denote 𝑑333, 𝑑311,
111 and 𝑑133 by 𝑑33, 𝑑31, 𝑑11 and 𝑑13, respectively.

. Results and discussion

In the presentation of our numerical results, unless otherwise stated
e have set 𝜖𝑚 = 2.35𝜖0, 𝜇𝑚 = 2.35𝜖0 and 𝜇𝑚 = 1 MPa, 𝜃 = 0.05 and

𝑎1 = 5𝑎3. Also, we assume that the inclusions are softer than the matrix
with 𝜇𝑚 = 103𝜇𝑝 and 𝜈𝑚 = 𝜈𝑝. We remark that typical experiments have
been on void inclusions and since softness is an important element, the
large elastic contrast we have chosen is physically relevant. In addition,
we assume the inclusion has the polarization 𝐩𝑠 = 𝑝𝑠𝐞3. We will change
all these material properties and investigate the effects of each one of
them on the effective piezoelectric coefficients of the material and draw
pertinent insights regarding the questions posed in the Introduction.

In Fig. 4, we investigate the effect of the direction of polarization
inside the material on the effective piezoelectric coefficients. We have
set

𝐩𝑠 = 𝑝𝑠
(

cos(𝛼)𝐞3 + sin(𝛼)𝐞1
)

, (118)

and plotted different piezoelectric coefficients with respect to the angle
𝛼. As evident, the 𝑑31 and 𝑑33 coefficients are maximized if the po-
larization is along the 𝐞3 direction. The 𝑑31 and 𝑑33 decreases as the
polarization direction rotates from 𝐞3 direction toward 𝐞1 direction and
these coefficients become zero when residual polarization is perpen-
dicular to the 𝐞3 direction. This result implies that if the polarization
is along 𝐞3 direction and if we apply an external electric field along 𝐞1
direction, we will not observe any piezoelectric effect and the material
will behave similar to a conventional dielectric material. A similar
results is reported for 𝑑11 and 𝑑13 piezoelectric coefficients where these
two coefficients are zero at 𝐩𝑠 = ±𝑝𝑠𝐞3 and they peak at 𝐩𝑠 = ±𝑝𝑠𝐞1.

In addition, Fig. 4 shows that 𝑑33 (resp. 𝑑11) piezoelectric coeffi-
cient is always greater than 𝑑31 (resp. 𝑑13) for all values of 𝛼. This
implies that the when an electric field is applied along the polarization
direction of the material, the first order deformation observed along the
polarization direction is always greater than the first order deformation
observed along the direction perpendicular to polarization direction of
the material. For the rest of this paper we set 𝐩𝑠 = 𝑝𝑠𝐞3 and focus on
𝑑 and 𝑑 coefficients.
8

33 31 h
Fig. 4. Rotation of preexisting dipole and its effect on effective dimensionless
piezoelectric coefficients of a composite material with ellipsoidal inclusions.

Fig. 5 show the variation of the effective piezoelectric coefficients
with the ratio of inclusion shear modulus over matrix shear modulus
( 𝜇𝑝𝜇𝑚 ) for different ratios of materials electric permittivity 𝜖𝑝

𝜖𝑚
. We have

set the matrix electric permittivity to 𝜖 = 2.35𝜖0 which is equivalent
to polypropylene (PP) electric permittivity (Qu and Yu, 2011) and
plotted piezoelectric coefficients. Note that the electric permittivity of
the inclusion cannot be less than vacuum electric permittivity and the
minimum possible value for electric permittivity ratio is 𝜖𝑝

𝜖𝑚
= 1∕2.35 ≈

0.5. Thus, we have plotted piezoelectric coefficients for 0.5 ≤ 𝜖𝑝
𝜖𝑚

≤ 2.
e will separately study the effect of electric permittivity ratio in

ue course. Figs. 5(a) and 5(b) show that in the absence of dielectric
ismatch ( 𝜖𝑝𝜖𝑚 = 1) and elastic mismatch ( 𝜖𝑝𝜖𝑚 = 1) both piezoelectric

coefficients 𝑑31 and 𝑑33 are zero (as expected) and as the ratio 𝜖𝑝
𝜖𝑚

increases to the values greater than one or decreases to the value less
than one, the magnitude of the piezoelectric effect increases. Fig. 5(a)
shows that as the ratio 𝜇𝑝

𝜇𝑚
increases, 𝑑33 decreases toward negative

alues while Fig. 5(b) indicates that as the ratio 𝜇𝑝
𝜇𝑚

increases, 𝑑31
increases becomes more positive. Also, Fig. 5 shows that increasing
𝜇𝑝
𝜇𝑚

to the values greater than 100 or decreasing it to the values less
han 0.01 will not have a considerable impact on the value of the
ffective piezoelectric coefficients. In addition, Fig. 5(a) shows that
ncreasing the ratio 𝜖𝑝

𝜖𝑚
from 0.5 to 2 shift 𝑑33 graph upward and

Fig. 5(b) shows that increasing the ratio 𝜖𝑝
𝜖𝑚

from 0.5 to 2 shift 𝑑31
graph downward. This implies that coexistence of elastic mismatch and
dielectric mismatch may intensify or weaken the piezoelectric effect.
For example, for a composite material composed of a soft inclusion
embedded in a hard matrix ( 𝜇𝑝𝜇𝑚 ≪ 1), increasing 𝜖𝑝

𝜖𝑚
from 0.5 to 0.8

increases 𝑑33 coefficient and decreases 𝑑31 coefficient to almost zero.
owever, if the inclusion is harder than the matrix material ( 𝜇𝑝𝜇𝑚 ≫ 1),

ncreasing 𝜖𝑝
𝜖𝑚

from 0.5 to 0.8 increases 𝑑31 coefficient but decreases 𝑑33
coefficient.

Figs. 6(a) and 6(b) elucidate the effect of dielectric mismatch on
the effective 𝑑31 and 𝑑33 piezoelectric coefficients, respectively. A sharp
ielectric contrast with a very large value of 𝜖𝑝

𝜖𝑚
leads to an insignificant

piezoelectric effect. Also, these figures show the maximum 𝑑33 achieved
s for a material with 𝜖𝑝

𝜖𝑚
≈ 11 and soft inclusion in a hard matrix

( 𝜇𝑝𝜇𝑚 ≤ 10−2) while the maximum 𝑑31 piezoelectric coefficient is for
ard inclusions embedded in soft matrices where inclusion has small
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Fig. 5. The effect of elastic contrast on the effective (a) 𝑑33 and (b) 𝑑31 piezoelectric coefficients.
Fig. 6. The effect of elastic contrast on the effective (a) 𝑑33 and (b) 𝑑31 piezoelectric coefficients.
𝜖𝑝
𝜖𝑚

ratio. Based on Figs. 5 and 6, we can conclude that the material
composition that will lead to maximum 𝑑33 effect is not the same as
the material composition that will lead to maximum 𝑑31 effects. The
formulation we presented here can be used to design materials with
optimum desirable piezoelectric effect.

The effect of material compressibility on the effective piezoelectric
coefficient is studied in Fig. 7. We have set the inclusion Poisson’s ratio
to 𝜈𝑝 = 0.1 and plotted 𝑑31 and 𝑑33 versus volume fraction for different
values of matrix Poisson’s ratio 𝜈𝑚 in Figs. 7(a) and 7(b), respectively.
It is clear that as volume fraction of inclusion increases, piezoelectric
coefficients also increase. Also, these figures show that as 𝜈𝑚 increases
both 𝑑31 and 𝑑33 are improved.

Fig. 8 shows the impact of the spheroid aspect ratio 𝑎1
𝑎3

on the
piezoelectric behavior of composite material. We have assumed that
9

the material is composed of a soft inclusion embedded in a hard matrix
(𝜇𝑝∕𝜇𝑚 = 10−3). Fig. 8(a) shows that the magnitude of 𝑑33 piezoelectric
coefficient improves with an increase in the aspect ratio unless there is
no dielectric mismatch in which case the change in the aspect ratio
will not have a significant impact on the piezoelectric coefficient.
On the other hand, Fig. 8(b) shows that the 𝑑31 piezoelectric coeffi-
cient remains almost unchanged as the aspect ratio increases. Fig. 8
shows that the 𝑑33 coefficient can be two to three orders of magnitude
larger than 𝑑31 piezoelectric coefficient. This behavior is consistent
with experimental measurement of piezoelectric coefficients of charged
polymer foams in which 𝑑33 coefficient has been reported to be two
orders of magnitude greater than the 𝑑31 coefficient (Neugschwandtner
et al., 2001). Based on this figure, we can conclude that one simple way
to design a composite material with large 𝑑33 piezoelectric coefficient
is to use spheroid inclusions with large aspect ratios.
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Fig. 7. The effect of inclusion volume fraction and the compressibility of the material on the effective (a) 𝑑33 and (b) 𝑑31 piezoelectric coefficients ( 𝜇𝑝
𝜇𝑚

= 10−3, 𝜖𝑝
𝜖𝑚

= 0.5, 𝜈𝑝 = 0.1).
Fig. 8. The effect of inclusion aspect ratio on the effective (a) 𝑑33 and (b) 𝑑31 piezoelectric coefficients.
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The effective piezoelectric coefficient of a composite electret ma-
erial with spheroid inclusion with 𝑎1∕𝑎3 = 100 and 𝜃 = 0.3 versus
esidual polarization 𝐩𝑠 = 𝑝𝑠𝐞3 has been plotted on Fig. 9. In addition,
e have plotted the piezoelectric coefficients of PZT (Guo et al., 2013)
nd a charged polymer foam electret material (Neugschwandtner et al.,
001). This figure shows that for 𝑝𝑠 ≈ 10−4 C/m2, both 𝑑31 and 𝑑33
oefficients of electret material considered in this work are almost equal
o piezoelectric coefficient of charged the PP polymer foam. As the
esidual polarization increases to 𝑝𝑠 ≈ 10−2, 𝑑31 piezoelectric coefficient
f the electret with spheroid inclusion becomes close to that of a PZT
aterial while 𝑑33 coefficient of the material considered in this work

s two orders of magnitude greater than the piezoelectric coefficient of
he PZT. This figure shows that electret material with large residual
olarization can exhibit a ‘‘giant’’ piezoelectric effect.
10

n

. Concluding remarks

In summary, we have used the theory of homogenization for soft
lectrets with charged ellipsoidal inclusions to find the analytical so-
utions for the emergent piezoelectric response. Our results indicate

subtle interplay between elastic mismatch, dielectric mismatch and
icrostructure geometry. In particular, our results provide insights into
hy typical electrets have a rather low 𝑑31 coefficient and possible
pproaches to optimize that response (as well as optimize all relevant
iezoelectric coefficients). A rather interesting conclusion is that elas-
ic and dielectric mismatch may work against each other. Given our
reliminary results, we believe that there is significant scope for all-

umerical optimization studies to design next-generation soft materials
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Fig. 9. Comparison of the effective piezoelectric coefficients of electrets with spheroid
inclusions with piezoelectric coefficients of PZT (Guo et al., 2013) and charged PP
polymer foam (Neugschwandtner et al., 2001).

as done, for instance, in Nanthakumar et al. (2017) and Hamdia et al.
(2022).
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Appendix. The components of auxiliary Eshelby tensor S for a unit
cell with ellipsoidal inclusion

The integration of Eshelby tensor has been explained in the Es-
helby’s original paper (Eshelby, 1957) and the textbooks (Li and Wang,
2008; Mura, 2013). We have followed the same approach as explained
in the Li and Wang (2008) and calculated component of auxiliary
Eshelby tensor S defined in Eq. (102). The components of S for an
ellipsoidal inclusion is given as

S1111 = 𝐶𝐴

(

𝐶𝐵
𝐶𝐴

− 2
)

𝐼1 − 3𝐶𝐴𝑎21𝐼11, (A.1)

S1122 = 𝐶𝐴
(

𝐼1 − 𝑎22𝐼12
)

, (A.2)

S1212 = 𝐶𝐴

(

−
𝐶𝐵
2𝐶𝐴

𝐼2 −
1
2
𝑎21𝐼12 −

1
2
𝑎22𝐼12 +

1
2
𝐼1

)

, (A.3)

S1221 =
𝐶𝐴
2

(

𝐼2 − 𝑎21𝐼12 −
𝐶𝐵
𝐶𝐴

𝐼1 − 𝑎22𝐼12

)

, (A.4)

where 𝐶𝐴 and 𝐶𝐵 are constants related to material properties of the
matrix material and are defined as

𝐶𝐴 = − 1 , (A.5)
11

𝑎6𝜋𝜇𝑚(1 − 𝜈𝑚)
𝐶𝐵 = − 1
4𝜋𝜇𝑚

+ 1
16𝜋𝜇𝑚(1 − 𝜈𝑚)

, (A.6)

and 𝐼𝑖,𝑗 are elliptical integrals defined in Eqs. (58) and (59). All other
components of the tensor S can be obtained by permutation of (1, 2, 3)
indices.
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