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A B S T R A C T

Materials that generate electrical signals upon exposure to a well-controlled stimuli are high
desirable. In that context, magnetoelectrics are unusual in the sense that the stimulus may be
applied remotely (and wirelessly) without recourse to any physical contact. Wireless energy
harvesting, remotely triggered biomedical agents, soft robots among others are some of the
applications of such materials. The magnetoelectric property however is somewhat elusive in
natural materials and artificial composites designed to exhibit this effect are invariably hard
materials, require a pre-existing magnetic field and only exhibit a non-trivial coupling at high
frequencies. Our recent experiments (presented elsewhere) demonstrated a facile route to create
highly deformable soft magnetoelectric materials predicated on the concept of programmable
hard magnetic soft materials with embedded immobile electric charges (electrets). In this work,
we offer a nonlinear theoretical framework to both understand the emergent magnetoelectric
effect in this class of soft materials as well as to design novel structures and devices with
tailored functionality. Specifically, we are able to show that mechanical strain convects
residual electrical and magnetic field states to mediate an unprecedented strong magnetoelectric
coupling that is independent of the applied external magnetic field and retains its potency at
low frequencies. We analytically solve simple illustrative examples to establish insights and
present a finite element approach to handle complexities that may be otherwise intractable.
The predictions of our theory agree very well with published experiments.

. Introduction

There are several compelling reasons to develop magnetoelectric (ME) materials. Such materials enable extremely low power
emories where data is written electrically but read magnetically (Bibes and Barthélémy, 2008). Electrical energy may be
arvested simply by the remote application of a magnetic field, which may be used for wireless charging of small-scale devices or
ensing (Annapureddy et al., 2017). In a rather fascinating recent study, hollow magnetoelectric capsules were used for drug delivery.
pon suitable application of a magnetic field, nano-electroporation mediated release of drugs at cancer sites was achieved (Guduru
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et al., 2013). We remark that biological media is transparent to magnetic fields and thus is of special relevance for biomedical
applications.1

Naturally occurring single-phase ME materials are scarce and the reason is simple. Such materials must couple magnetic order
arameter (typically found in a class of metals) with electrical polarization order (found in certain types of dielectrics). This
ontradictory requirement and other associated details (see Schmid, 1994; Hill, 2000 for further information) imply that the
iscovered single phase natural ME’s, aside from being rare, have an exceedingly low coupling; especially at temperature range
ypically associated with engineering applications (Bhoi et al., 2021). A survey of research activities in the field of multiferroics
which are magnetoelectric) can be found in several review articles (Dong et al., 2015; Catalan and Scott, 2009; Spaldin and Ramesh,
019; Lottermoser et al., 2004; Wang et al., 2010; Pyatakov and Zvezdin, 2012; Tokura et al., 2014; Fiebig et al., 2016; Eerenstein
t al., 2006).

An expedient route to design magnetoelectrics has been by creating composites composed of magnetostrictive (ferromagnetic)
nd piezoelectric (ferroelectric) constituents. The emergent ME effect in such composites is due to the cross coupling between
agnetostrictive and piezoelectric phases and is (usually) mediated through mechanical deformation. The strain generated in the
agnetostrictive phase of the composite, in response to applied magnetic field, is transferred to piezoelectric phase through the

nterface of the two phases and the developed strain in the piezoelectric phase generates electrical polarization. Such composites,
ike single phase magnetoelectrics are rather hard materials and earlier studies reported magnetoelectric voltage coupling coefficients

that did not surpass 0.1 Vcm−1Oe−1 (Zhou et al., 2015; Nan et al., 2008).2 In early 2000s, theoretical (Nan et al., 2001b,a) and
experimental (Ryu et al., 2001b,a; Dong et al., 2003) research confirmed the existence of giant ME effect (with the voltage coupling
coefficient greater than 1 Vcm−1Oe−1), in composites containing magnetostrictive rare-earth-iron alloy Tb1–xDyxFe2 (Terfenol-
D). This observation made these composites desirable for technological applications. Further research into the development of
magnetoelectric composites have enabled giant ME effect in different composites which contain polymer or ceramic as piezoelectric
phase and a variety of magnetostrictive materials, including ferrites (Srinivasan et al., 2003), Fe–Ga alloy (Dong et al., 2005) and
Metglas (Zhai et al., 2006). We refer the reader to several reviews for a survey of the research on this topic (Ma et al., 2011;
Liang et al., 2021; Narita and Fox, 2018; Hu et al., 2017; Chu et al., 2018; Malley et al., 2021; Pradhan et al., 2020; Martins and
Lanceros-MenNdez, 2013; Bitla and Chu, 2018).

Notwithstanding the progress made on the subject of magnetoelectrics, especially in the context of composites, we reiterate that
soft magnetoelectrics are rather elusive. Soft materials capable of large elastic deformation offer new functionalities that is simply
not possible with their hard counterparts—e.g soft robotics, health care (Cianchetti et al., 2018), stretchable, flexible and wearable
electronics (Rogers et al., 2010) among others. We remark that although there have been successful attempts in creating materials
for power harvesting from different sources of energy including mechanical (Dagdeviren et al., 2014), thermal (Peng et al., 2019),
chemical (Shi et al., 2018) or optical (de Cea et al., 2021), surprisingly limited progress has been made in the development of soft
materials suitable for magnetoelectric conversion despite all the advantages it could potentially offer.

There are several other disadvantages that plague the current state-of-the-art in composite magnetoelectrics:

• The design and fabrication of ME composites is a complex process as there are a large number of factors including connectivity,
microstructure, volume fraction of individual phases, among others (Liang et al., 2021) that must be carefully tailored to
achieve a large ME effect and avoid problems such as current leakage and substrate clamping (Ma et al., 2011). The ME
coupling in these materials strongly depends on the strain transfer between the different phases and this aspect is not simple
to control (Pradhan et al., 2020).

• A key disadvantage of the current high quality ME composites are that they are not mechanically soft. Polymer based
composites which, compared to ceramic and magnetic alloy based composites, offer some recourse however the ones created so
far (see Bitla and Chu, 2018 and references therein) are thin materials that can accommodate deformations similar to bending
in which deflection may be quite large but strain is small. This is partially because truly soft piezoelectric materials do not exist.
Appreciable intrinsic piezoelectricity only exists in hard brittle materials with non-centrosymmetric crystals (Liang et al., 2021;
Deng et al., 2014a; Rahmati et al., 2019; Deng et al., 2014b). Although some polymers such as PVDF and its co-polymers exhibit
piezoelectricity in their semi-crystalline phase, the magnitude of their stiffness is in the range of GPa which is not considered
soft enough (Bhavanasi et al., 2016; Lu et al., 2020; Liu et al., 2018; Chang et al., 2010).

• Another significant disadvantage of ME composites is that a static bias magnetic field is required for the composites to exhibit a
significant coupling. As mentioned earlier, the ME coupling in composites is realized through the so-called ‘‘product property’’
of the two piezoelectric and magnetoelastic phases. The magnetic field induced strain generated in the magnetoactive phase
is transferred to the piezoelectric which leads to the generation of an electric signal. The strain or stretch developed in a
magnetostrictive material depends quadratically on the external magnetic field. Thus, the ME coupling coefficient of the
material (which is related to the rate of change of strain with respect to external magnetic field) depends linearly on the
external magnetic field. Therefore, the magnetoelectric coefficient of the composites depends on the applied external field and
is asymptotically zero as the applied field diminishes. Accordingly, an additional external applied static bias magnetic field is
necessary to achieve a non-trivial magnetoelectric coupling in composites. This places requirements of additional weight and
space (Palneedi et al., 2018) rendering any sort of miniaturization difficult. We remark that, in the past decade, notions of

1 A fact we rely on in medical equipment like magnetic resonance imaging where human bodies can be subjected to very high-strength magnetic fields. An
nalogous exposure to electrical fields, of course, would be fatal.

2 The magnetoelectric voltage coefficient links the change in electric field with respect to the magnetic field.
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introducing internal/self-bias field in composite to replace the external bias field have been proposed (Mandal et al., 2010,
2011; Gong et al., 2019; Zhang et al., 2013; Lage et al., 2012). However, most self-biased composites are bulky in size and
their fabrication requires special synthesis process which leads to additional steps in developing functional devices (Zhou et al.,
2015).

• Typical ME composites exhibit a strong coupling only at high frequencies and their coupling coefficient significantly diminishes
at small frequencies. This is unfortunate since many applications such as targeted drug delivery (Nair et al., 2013), brain
stimulation (Nguyen et al., 2021), tissue regeneration and wireless energy transfer for implantable medical devices require
lower frequency (since high frequency magnetic field may cause safety concerns) (Kopyl et al., 2021).

Recently, we have proposed a new mechanism to create magnetoelectric coupling using soft materials like rubber and without the
eed for piezoelectric and magnetostrictive materials (Alameh et al., 2014; Tan et al., 2020a). The central idea is to embed immobile
harges or dipoles in a soft material (—such materials are called electrets) and ensure that the magnetic permeability of the material
s higher than that of vacuum (by introducing a modest fraction of magnetic particles that do not appreciably alter the mechanical
tiffness). We showed both theoretically (Alameh et al., 2014) and experimentally (Tan et al., 2020b) that these soft-magnetic soft
lectret(SMSE) materials exhibit a ME effect. The mechanism underpinning such materials is predicated on the fact that electrets
xhibit a significant artificial piezoelectric-like behavior (Rahmati et al., 2019; Deng et al., 2014a,b; Liu and Sharma, 2018; Apte
t al., 2020; Bauer et al., 2004; Rahmati et al., 2022). Based on the Maxwell stress effect, any material with relative permeability
reater than one will deform in response to an external magnetic field. A non-uniform deformation in the electret materials can lead
o a piezoelectric effect. Therefore, a ME effect can be seen in SMSEs made of two different layers with different material properties.
o the best of our knowledge, soft SMSEs are the only soft ME ‘‘materials’’ developed so far, even though there is precedent of ME
oupling in soft ‘‘structures’’ through embedding multiferroic nanoparticles in soft materials (Nair et al., 2013; Mushtaq et al., 2019;
hang et al., 2021b; Dong et al., 2020) or through electromagnetic induction (Zhang et al., 2020, 2021a).

Despite the progress made recently in the context of soft magnetoelectric materials (summarized in the preceding paragraph), the
E coupling itself is rather small unless extraordinarily large magnetic fields are applied. This is because the relationship between
agnetic field and strain induced as a result of the Maxwell stress is quadratic in SMSE materials. In this sense, SMSEs behave

imilar to magnetoelectric composite materials where a bias magnetic field is required to achieve strong magnetoelectric coupling.
urthermore, since there is a quadratic relationship between strain developed in the material and applied magnetic field, the SMSEs
re not sensible to the direction of applied magnetic field and the ME response only depends on the magnitude of the applied field.
his restricts application of SMSEs as magnetoelectric sensors. Moreover, non-uniform strain is required to achieve a large magnetic
ffect under uniform magnetic field in SMSEs and it is not straightforward to induce non-uniform strain without an elastic mismatch.

A recent development pertaining to a novel class of magnetosensitive materials present an alternative solutions to create
oft materials that exhibit large actuation strains. Zhao et al. used soft elastomers with embedded high-coercivity hard-magnetic
icroparticles (Zhao et al., 2019; Kim et al., 2018). A high remnant residual flux density allows them to exhibit a linear relationship

etween strain and magnetic field. Using the notion of programming the pattern of magnetic dipoles, tailored magnetic actuation
an be achieved and remarkable experimental and theoretical results have been reported in a rather short time. We remark that
he recent literature has exploded with clever design of magneto-mechanical materials and attendant applications (Wu et al., 2020;
uang et al., 2021; Ze et al., 2020, 2022; Wu et al., 2022; Danas et al., 2012; Danas and Triantafyllidis, 2014; Lefèvre et al., 2017;
anas and Triantafyllidis, 2014; Mukherjee et al., 2020, 2021; Psarra et al., 2019; Lefèvre et al., 2020)

In this work, we present a mathematical theory that combines the concept of hard magnetic soft materials with electrets
HMSE). Like in prior works, the magnetic dipoles can be programmed—which we will refer to as programmable hard magnetic
oft electrets(PHMSEs). Thus HMSEs are dielectric materials with immobile residual electric charges/dipoles and residual magnetic
lux density(Fig. 1). The magnetoelectric effect will emerge in HMSEs if the magnetic field generates a non-uniform strain in the
aterial. We present a nonlinear coupled theory for the behavior of HMSEs. We also present a finite element (FE) implementation of

he theory. Similar to SMSEs, the simplest possible geometry for HMSEs is composed of a bi-layer with an elastic mismatch or/and
iffering magnetic flux density with a layer of external charges at the interface. Moreover, as it is quite simple to program residual
lux density of hard magnetic soft materials to exhibit a desired form of deformation (Gong et al., 2020), we propose PHMSEs in
hich non-uniform strain is generated in response to a uniform external magnetic field due to presence of gradient in the residual
agnetic flux density in the elastically homogeneous soft material. Since bending deformation yields lower resonance frequency

nd large strain gradient, we design a PHMSE with the residual magnetic flux density tailored to obtain bending deformation in
esponse to a uniform magnetic field. We show that the bending deformation mediated coupling in HMSEs can lead to a remarkably
trong magnetoelectric effect. We find excellent agreement between our theoretical predictions and experimental realization of both
MSEs and PHMSEs. As an aside, we also take the opportunity to rigorously justify some of the approximations used in past work
nd comment on the symmetry property of the Cauchy stress tensor in the context of hard magnetic soft materials.

This paper is organized as follows. Theoretical study of the HMSEs is presented in Section 2. The governing equation and
oundary conditions required to analyze behavior of the HMSEs is presented in Section 2.1 using a variational approach. In
articular, in Section 2.2, we revisit an issue that often is discussed int he context of magnetic materials—the symmetry of the
auchy stress tensor. A simple finite element implementation for incompressible HMSEs is presented in Section 3. The voltage
oupling coefficient for a bi-layer HMSE is determined analytically in Section 4.1. An approximate estimate for the voltage coupling
oefficient enabled through magnetic field induced bending deformation of a HMSE is obtained in Section 4.2. We elaborate on shape
rogrammable feature of HMSE materials in Section 4.3. In Section 5, we present numerical results for cases that are intractable
nalytically. We demonstrate the prospect of wireless energy harvesting using a parallel plate capacitor made of hard magnetic soft
aterial in Section 5.2. The behavior of a PHMSE under magnetic field induced bending is studied in Section 5.3.
3
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Fig. 1. Schematic of the hard magnetic soft electret material. Applying a magnetic field to a hard magnetic soft electret material can generate an electric field
(schematically depicted as lightning) in the material.

2. Theory of hard magnetic soft electrets

In this section, we present a variational approach to derive the governing equations and boundary conditions for hard magnetic
soft electret materials. We also justify some of the common approximations that have been used in the past in the context of hard
magnetic soft materials c.f. Zhao et al. (2019) and comment on the symmetry of the stress tensor—a notion that appears occasionally
to be misinterpreted in the literature.

2.1. Formulation

As will become evident, the emergent magnetoelectric effect requires accounting for nonlinear deformation and accordingly
we must distinguish the continuum deformable body in the reference configuration 𝛺𝑅 ⊂ R3 and current configuration 𝛺 ⊂ R3.
As shown in Fig. 2, the deformable body 𝛺𝑅 is located inside an ambient medium 𝑅 (𝛺𝑅 ⊂ 𝑅) with electric permittivity3 𝜖0.
The deformation 𝝌 ∶ 𝛺𝑅 → 𝛺 transforms material points 𝐗 in the reference configuration to the spatial points 𝐱 in the current
configuration. It is assumed that the ambient medium 𝑅 is elastically trivial with zero elastic stiffness. Thus, the definition of the
deformation 𝝌 for the points located in 𝑅 ⧵ 𝛺𝑅 has no physical meaning and we may choose 𝝌 → 𝐗 quickly away from 𝜕𝛺𝑅
where 𝜕𝛺𝑅 denotes the boundary of the body 𝛺𝑅. We reserve the symbol ∇ for the gradient in the reference configuration and the
differential operators in the current configuration are denoted by ‘‘grad’’ and ‘‘div’’. To define relevant fields in the reference and
current configurations, we introduce the deformation gradient 𝐅, the Jacobian 𝐽 , and the right Cauchy–Green strain tensor 𝐂:

𝐅 = ∇𝝌 , 𝐽 = det𝐅 > 0, 𝐂 = 𝐅𝑇𝐅.

Hard magnetic soft electret materials contain both pre-existing immobile charges or dipoles as well as pre-existing magnetic
moments. For electric fields, let 𝜌𝑒 ∶ 𝛺 → R be the external charge density, 𝐩 ∶ 𝛺 → R3 the polarization in the current configuration
and 𝐝 the electric displacement. For magnetic fields, we assume there are two sources: one is from an external source, i.e., the
magnetic field 𝐡𝑒 = −grad𝜙𝑒 in space upon removal of the continuum body, and the pre-existing magnetization due to the embedded
hard magnetic particles 𝐦𝑟 ∶ 𝛺 → R3 or residual magnetic flux 𝐛𝑟 = 𝜇0𝐦𝑟 (—𝜇0 is the magnetic permeability of vacuum.) Note that
the residual magnetic flux is employed in analogy with electric polarization and in general is not divergence-free.

The mechanical, electrostatic and magnetostatic boundary conditions are prescribed as follows. Dirichlet boundary condition
𝝌 = 𝝌𝑏 are imposed on 𝑆𝐷 and tractions �̃�𝑒 are applied on 𝑆𝑁 (𝑆𝐷 ∪𝑆𝑁 = 𝜕𝛺𝑅) (Fig. 2). An external voltage 𝜉 = 𝜉𝑏 may be imposed
on 𝛤𝐷 and �̃� ⋅ 𝐍 = 𝐷𝑏 on 𝛤𝑁 where 𝛤𝐷 ∪ 𝛤𝑁 = 𝜕𝑅 and 𝐍 denotes unit normal to the boundary in the reference configuration.

3 We have assumed the ambient medium is vacuum in all the results presented in this paper. However, the formulation presented is general and can be used
for any other ambient medium.
4
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Fig. 2. Continuum deformable body and surrounding medium in the reference configuration.

Neglecting the dynamic coupling between electric and magnetic fields, the Maxwell equations in the current configuration can
be written as:

𝐞 = −grad𝜉, div(𝐝) = 𝜌𝑒, 𝐝 = 𝜖0𝐞 + 𝐩, in ,

𝐡 = −grad𝜙 div(𝐛) = 0, 𝐛 = 𝜇0(𝐡 +𝐦) in R3.
(1)

where 𝜉 ∶  → R (resp. 𝜙 ∶ R3 → R) is the electrostatic (resp. magnetostatic) potential. Note that ‘‘resp.’’ is abbreviation for
respectively throughout this paper. Further, the total magnetostatic potential can be written as 𝜙 = 𝜙𝑒 + 𝜙𝑠, where 𝜙𝑠 is due to the
magnetization and satisfies

{

div
(

𝐡𝑠 +𝐦𝜒𝛺
)

= 0 in R3,

|∇𝜙𝑠
| = 𝑂(|𝐱|−3) → 0 as |𝐱| → +∞,

(2)

where 𝐡𝑠 = −grad𝜙𝑠 and 𝜒𝛺 is the characteristic function of domain 𝛺 satisfying

𝜒𝛺 =

{

1 on 𝛺,
0 otherwise.

It will be useful to rewrite the Maxwell equations in Lagrange’s coordinates for the reference configuration. To this end, we define4

�̃� = 𝐽𝐅−1𝐩, 𝜌𝑒 = 𝐽𝜌𝑒, �̃� = 𝐽𝐅−1𝐦. (3)

Upon changes of variables 𝐱 → 𝐗, the Maxwell equations in the reference configuration can be written as

∇ ⋅ �̃� = 𝜌𝑒, �̃� = −𝜖0𝐽𝐂−1∇𝜉 + �̃�, in 𝑅,

∇ ⋅ �̃� = 0, �̃� = −𝜇0𝐽𝐂−1∇𝜙 + 𝜇0�̃�, in R3.
(4)

We remark that the Maxwell Eqs. (4) in the reference configuration, though appear to be ‘‘messier’’ than (1), are convenient for
computing the first variation of the free energy and unveiling the origin of the stress associated with electromagnetic fields.

The total free energy of the system that includes the body and boundary loading devices is identified as (Liu, 2014)

 [𝝌 , �̃�, �̃�] = 𝑈 [𝝌 , �̃�, �̃�] + elec[𝝌 , �̃�] + magnet[𝝌 , �̃�] − ∫𝑆𝑁

�̃�𝑒 ⋅ 𝝌 , (5)

where 𝑈 [𝝌 , �̃�, �̃�] is the free energy of the body, elec[𝝌 , �̃�] (resp. magnet[𝝌 , �̃�]) is the energy associated with the electric
(resp. magnetic field) and boundary devices for maintaining the prescribed boundary conditions. For materials with deformation-
independent electric permittivity 𝜖 and ‘‘unmagnetizable’’ beyond the pre-existing magnetization, we identify the free energy of the

4 We remark that the polarization �̃� here is equivalent to 𝐅−1�̃� in Liu (2014). This change of notation/variables is convenient for prescribing the magnetic
constitutive law of the body, separating stresses of different physical origins, and demonstrating the symmetry of the associated Cauchy stress (c.f., Section 2.2).
5
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body 𝑈 [𝝌 , �̃�, �̃�] as (Liu, 2014)

𝑈 [𝝌 , �̃�, �̃�] = ∫𝛺𝑅

𝛹 (𝐅, �̃�, �̃�),

𝛹 (𝐅, �̃�, �̃�) = 𝑊 elast(𝐅) + �̃� ⋅ 𝐂�̃�
2𝐽 (𝜖 − 𝜖0)

+
𝜇2
0(�̃� − �̃�𝑟) ⋅ 𝐂(�̃� − �̃�𝑟)

2𝐽 (𝜇 − 𝜇0)
,

(6)

where the free energy density function 𝛹 ∶ R3×3 × R3 × R3 → R prescribes the magneto-electro-elastic constitutive behaviors of the
material, �̃�𝑟 = 𝐽𝐅−1𝐦𝑟 is the pre-existing magnetization due to the hard magnetic particles in the reference configuration, and 𝜇 is
the linearized magnetic permeability of the body. Contribution of electric field energy elec to the total internal energy is expressed
as

elec[𝝌 , �̃�] = ∫𝑅

𝜖0
2
𝐽∇ 𝜉 ⋅ 𝐂−1∇ 𝜉 + ∫𝛤𝐷

𝜉𝑏𝐍 ⋅ �̃�. (7)

Similarly, the magnetic contribution magnet is given by

magnet[𝝌 , �̃�] = ∫R3

𝜇0
2
|𝐡|2 = ∫R3

𝜇0
2
𝐽∇𝜙 ⋅ 𝐂−1∇𝜙. (8)

By the principle of minimum free energy, the equilibrium states are determined by minimizing the total free energy of the system:

min
(𝝌 ,�̃�,�̃�)∈

 [𝝌 , �̃�, �̃�], (9)

here admissible space  is defined as

 ≡ {(𝝌 , �̃�, �̃�) | 𝝌 = 𝝌𝑏 on 𝑆𝐷, �̃�, �̃� are arbitrary}. (10)

Enforcing the Maxwell’s Eqs. (4) as constraints, we use the standard variational process to derive the governing Euler–Lagrange
quations associated with the variational principle (9). We omit details of derivation here since the procedure is standard and key
lements may be found in, e.g., Liu (2014). In particular, we find the relevant first-variations as follows:

𝑑
𝑑𝜀

|

|

|𝜀=0
 [𝝌 + 𝜀𝝌1, �̃�, �̃�] = ∫𝛺𝑅

�̃�
tot

⋅ ∇𝝌1,

𝑑
𝑑𝜀

|

|

|𝜀=0
 [𝝌 , �̃� + 𝜀�̃�1, �̃�] = ∫𝛺𝑅

( 𝜕𝛹
𝜕�̃�

+ ∇𝜉) ⋅ �̃�1,

𝑑
𝑑𝜀

|

|

|𝜀=0
 [𝝌 , �̃�, �̃� + 𝜀�̃�1] = ∫𝛺𝑅

( 𝜕𝛹
𝜕�̃�

+ 𝜇0∇𝜙) ⋅ �̃�1,

(11)

where 𝝌1 ∶ 𝛺𝑅 → R3 is any displacement satisfying 𝝌1 = 0 on 𝜕𝛺𝑅, and

�̃�
tot

= 𝜒𝛺𝑅

(

�̃� + �̃�
MW
elec + �̃�

MW
magnet

)

, �̃� =
𝜕𝛹 (𝐅, �̃�, �̃�)

𝜕𝐅
,

Σ̃MW
elec = −

𝜖0
2
𝐽 |𝐅−𝑇∇𝜉|2𝐅−𝑇 − 𝐅−𝑇∇𝜉 ⊗ (−𝜖0𝐽𝐂−1 ∇ 𝜉),

�̃�
MW
magnet = −

𝜇0
2
𝐽 |𝐅−𝑇∇𝜙|2𝐅−𝑇 − 𝐅−𝑇∇𝜙⊗ (−𝜇0𝐽𝐂−1∇𝜙).

(12)

From (11) we identify the physical meaning of �̃� tot as the total Piola–Kirchhoff stress. Consequently, the Euler–Lagrange equations
for equilibrium states read

∇ ⋅
(

�̃� + Σ̃MW
elec + Σ̃MW

magnet

)

= 0 in 𝛺𝑅,

𝐅−𝑇∇𝜉 + 𝐅�̃�
𝐽 (𝜖 − 𝜖0)

= 0 in 𝛺𝑅,

𝐅−𝑇∇𝜙 +
𝜇0𝐅(�̃� − �̃�𝑟)
𝐽 (𝜇 − 𝜇0)

= 0 in 𝛺𝑅.

(13)

In particular, in the current configuration the last two of the above equations are equivalent to

𝐞 = 𝐩
𝜖 − 𝜖0

, 𝐡 = 𝐦 −𝐦𝑟

𝜇∕𝜇0 − 1
.

As 𝜇 → 𝜇0, the last equation implies

𝐦 → 𝐦𝑟, 𝐛 = 𝜇0(𝐡 +𝐦) = 𝜇𝐡 + 𝜇0𝐦𝑟 → 𝜇0(𝐡 +𝐦𝑟),

meaning that the body is hardly magnetizable beyond the pre-existing magnetization 𝐦𝑟. In other words, the magnetization on each
material point is given by �̃�𝑟 in the reference configuration that will be independent of the deformation and externally applied
magnetic field. Subsequently, we assume

𝜇 = 𝜇 .
6

0



Journal of the Mechanics and Physics of Solids 171 (2023) 105136A.H. Rahmati et al.
In addition, on the boundary 𝑆𝑁 , a quick free-body diagram analysis (or a more careful calculus of variations for general 𝝌1 that
is nonzero on 𝑆𝑁 ) yields

[[�̃� + Σ̃MW
elec + Σ̃MW

magnet]] ⋅ 𝐍 + �̃�𝑒 = 𝟎 on 𝑆𝑁 , (14)

where [[(⋅)]] = (⋅)+ − (⋅)− represents the jump across the interface, and subscript + (resp. −) means the interface side pointed by 𝐍
(resp. −𝐍).

Due to the particular form of free energy density (6) and the symmetry and symmetry broken by the external magnetic field, it
is physically more transparent to transform the Piola–Kirchhoff stresses into Cauchy stress via

𝜮 → 𝝈 = 1
𝐽
𝜮𝐅𝑇 , (15)

and combine or decompose stresses in (12) as follows. First, we notice that

𝜕
𝜕𝐅

( �̃� ⋅ 𝐂�̃�
2𝐽 (𝜖 − 𝜖0)

)

=
(𝐅�̃�)⊗ �̃�
𝐽 (𝜖 − 𝜖0)

−
|𝐅�̃�|2

𝐽 (𝜖 − 𝜖0)
𝐅−𝑇 →

1
𝜖 − 𝜖0

[

𝐩⊗ 𝐩 − |𝐩|2 𝐈
2
]

,

𝜕
𝜕𝐅

(𝜇2
0(�̃� − �̃�𝑟) ⋅ 𝐂(�̃� − �̃�𝑟)

2𝐽 (𝜇 − 𝜇0)

)

→
𝜇2
0

𝜇 − 𝜇0

[

(𝐦 −𝐦𝑟)⊗ (𝐦 −𝐦𝑟) − |𝐦 −𝐦𝑟
|

2 𝐈
2
]

.

Singling out the elastic contribution and merging the rest to electromagnetic Maxwell stresses we obtain

1
𝐽
(�̃� + �̃�

MW
elec + �̃�

MW
magnet )𝐅

𝑇 = 𝝈elast + 𝝈MW
elec + 𝝈MW

magnet in 𝛺, (16)

where

𝝈elast =
𝜕𝑊 elast (𝐅)

𝐽𝜕𝐅
𝐅𝑇 , 𝝈MW

elec = − 𝜖
2
|𝐞|2𝐈 + 𝐞⊗ (𝜖𝐞),

𝝈MW
magnet = −

𝜇0
2
|𝐡|2𝐈 + 𝐡⊗ (𝜇0𝐡).

(17)

Second, separating the contributions of external magnetic field and pre-existing magnetization, we rewrite the magnetic Maxwell
stress as

𝝈MW
magnet = 𝝈𝑒

magnet + 𝝈𝑠
magnet + 𝝈int

magnet ,

where the superscript 𝑒 (resp. 𝑠, int) means ‘‘external’’ (resp. ‘‘self’’, ‘‘interaction’’). That is,

𝝈𝑒
magnet = 𝜇0𝐡𝑒 ⊗ 𝐡𝑒 −

𝜇0
2
|𝐡𝑒|2𝐈, 𝝈𝑠

magnet = 𝜇0𝐡𝑠 ⊗ 𝐡𝑠 −
𝜇0
2
|𝐡𝑠|2𝐈,

𝝈int
magnet = 𝜇0𝐡𝑠 ⊗ 𝐡𝑒 + 𝜇0𝐡𝑒 ⊗ 𝐡𝑠 − 𝜇0(𝐡𝑒 ⋅ 𝐡𝑠)𝐈.

(18)

Recall that 𝐡𝑒 = −∇𝜙𝑒 is the externally applied magnetic field and satisfies div(𝐡𝑒) = 𝜙𝑒
,𝑘𝑘 = 0 on R3 and 𝐡𝑠 = −∇𝜙𝑠 is the self

magnetic field arising from the preexisting magnetization. Therefore,

(𝝈𝑒
magnet)𝑖𝑗,𝑗 = 𝜇0𝜙

𝑒
,𝑖𝑗𝜙

𝑒
,𝑗 + 𝜇0𝜙

𝑒
,𝑖𝜙

𝑒
,𝑗𝑗 − 𝜇0𝜙

𝑒
,𝑘𝑖𝜙

𝑒
,𝑘 = 0,

(𝝈𝑠
magnet)𝑖𝑗,𝑗 = 𝜇0𝜙

𝑠
,𝑖𝑗𝜙

𝑠
,𝑗 + 𝜇0𝜙

𝑠
,𝑖𝜙

𝑠
,𝑗𝑗 − 𝜇0𝜙,𝑘𝑖𝜙

𝑠
,𝑘 = 𝜇0𝜙

𝑠
,𝑖𝜙

𝑠
,𝑗𝑗 ,

(𝝈int
magnet)𝑖𝑗,𝑗 = 𝜇0𝜙

𝑠
,𝑖𝑗𝜙

𝑒
,𝑗 + 𝜇0𝜙

𝑠
,𝑖𝜙

𝑒
,𝑗𝑗 + 𝜇0𝜙

𝑒
,𝑖𝑗𝜙

s
,𝑗 + 𝜇0𝜙

𝑒
,𝑖𝜙

s
,𝑗𝑗 − 𝜇0𝜙

𝑒
,𝑘𝑖𝜙

𝑠
,𝑘 − 𝜇0𝜙

𝑒
,𝑘𝜙

𝑠
,𝑘𝑖

= 𝜇0𝜙
𝑒
,𝑖𝜙

𝑠
,𝑗𝑗 .

In direct notation, the results of the above calculations can be concisely written as div𝝈𝑒
magnet = 0 in R3, and

div𝝈𝑠
magnet = 𝜇0𝐡𝑠div𝐡𝑠 = −𝜇0𝐡𝑠div(𝐦𝑟𝜒𝛺) in R3,

div𝝈int
magnet = 𝜇0𝐡𝑒div𝐡𝑠 = −𝜇0𝐡𝑒div(𝐦𝑟𝜒𝛺) in R3,

(19)

where the last equality follows from (2).
A few remarks are in order here regarding the definition and mechanical effects of the ‘‘Maxwell stress’’. First of all, there is

no consensus on the definition of Maxwell stress in the literature. This issue arises from the different way of decomposing the total
free energy into the elastic part and electromagnetic part (Toupin, 1960), and the choice is often for the convenience of a particular
material model. For instance, the Maxwell stress on the right hand side of (16) is not the same as on the left hand side, besides
the transformation (15). In other words, the precise expression of Maxwell stress depends on the material model and how the total
stress is decomposed into the elastic part and electromagnetic part. Second, from the fundamental physics it is indisputable that
the force on a point magnetic moment 𝐦 ∈ R3 in an external field 𝐡𝑒 is given by 𝜇0(∇𝐡𝑒)𝐦 (Jackson, 1999). Now we consider a
continuum body 𝛺 with magnetization 𝐦 ∶ 𝛺 → R3, the total magnetic body force on the body should be given by

𝐟magnet ≡ 𝜇0(∇𝐡)𝐦 = 𝜇0(∇𝐡𝑒)𝐦, (20)
7

∫𝛺 ∫𝛺
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provided the total magnetic field 𝐡 = −(∇𝜙𝑒 + ∇𝜙𝑠) is differentiable. Indeed, suppose the magnetization 𝐦 ∶ 𝛺 → R3 is continuous
and vanishes on 𝜕𝛺, implying the magnetic field 𝐡 is continuously differentiable on R3. By (19) we have

∫𝛺
div𝝈magnet = ∫𝛺

[

div(𝝈𝑒
magnet + 𝝈𝑠

magnet + 𝝈int
magnet )

]

= ∫𝛺
div(𝝈𝑠

magnet ) − 𝜇0 ∫𝛺
𝐡𝑒div(𝐦) = −𝜇0 ∫𝛺

[

div(𝐡𝑒 ⊗𝐦) − (∇𝐡𝑒)𝐦
]

= 𝜇0 ∫𝛺
(∇𝐡𝑒)𝐦,

which is consistent with (20). Here, we have used (𝐵𝑅 is the radius-𝑅 ball centered at the origin)

∫𝛺
div(𝝈𝑠

magnet ) = lim
𝑅→+∞∫𝐵𝑅

div(𝝈𝑠
magnet ) = lim

𝑅→+∞∫𝜕𝐵𝑅

𝝈𝑠
magnet𝐧𝑑𝑎 → 0. (21)

Physically, the above equation (21) means that the total magnetic force on the magnetic body due to its own magnetization should
vanish (as implied by the Newton’s Third Law), though the local stress due to magnetic interaction is in general nonzero. Finally,
we emphasize that the integrand of (20), i.e., 𝜇0(∇𝐡𝑒)𝐦 or 𝜇0(∇𝐡)𝐦 in general cannot be interpreted as the body force due to
magnetization in the continuum body.5

To summarize, by (1), (2), and (13) the field equations in the current configuration for determining the magneto-electro-elastic
equilibrium states consist of

div
(

𝝈elast + 𝝈MW
elec + 𝝈𝑠

magnet

)

= −div(𝝈int
magnet ) in 𝛺,

div(−∇𝜙𝑠 +𝐦𝑟𝜒𝛺) = 0 in R3,

div(−𝜀∇𝜉) = 𝜌𝑒 in ,

(22)

where the Maxwell stresses are given by (17) and (18). We can see that (22) represents a coupled nonlinear system for
deformation-magnetostatic potential and electric potential (𝝌 , 𝜙𝑠, 𝜉).

A technical difficulty in solving (22) lies in the necessity of solving the magnetostatic equation (2) for the nonlocal self magnetic
field 𝐡𝑠 = −∇𝜙𝑠. From (19)2, we see that the body force contributed by 𝝈int

magnet depends only on the external field 𝐡𝑒 and pre-existing
magnetization 𝐦𝑟. In particular, if the external magnetic field 𝐡𝑒 is uniform, we have

div𝝈int
magnet = −𝜇0div

(

𝐡𝑒 ⊗𝐦𝑟𝜒𝛺
)

. (23)

The self magnetic Maxwell stress 𝝈s
magnet does depend on the self-magnetic field and, quantitatively, could be non-negligible as

compared with 𝝈int since the pre-existing magnetization 𝐦𝑟 may be large for hard-magnetic particles. Nevertheless, we notice that
the body forces contributed by 𝝈s

magnet form a self-equilibrated force system in the sense that the resultant force on the body vanishes
(c.f., (21)) and the resultant torque on the body also vanishes:

∫𝛺
[𝐱 × div(𝝈𝑠

magnet )]𝑖 = lim
𝑅→+∞∫𝐵𝑅

{[𝑖𝑗𝑘𝑥𝑗 (𝝈𝑠
magnet )𝑘𝑙],𝑙 − [𝑖𝑗𝑘𝛿𝑗𝑙(𝝈𝑠

magnet )𝑘𝑙]}

= lim
𝑅→+∞∫𝜕𝐵𝑅

𝑖𝑗𝑘𝑥𝑗 (𝝈𝑠
magnet )𝑘𝑙𝑛𝑙𝑑𝑎 → 0,

(24)

where 𝑖𝑗𝑘 (resp. 𝛿𝑖𝑗) is the Levi-Civita symbol (resp. Kronecker delta) and the last step follows from (2)2. Therefore, the self magnetic
Maxwell stress, as the conventional residual stress, may be taken into account by choosing the reference configuration as the initial
configuration (instead of the ‘‘stress-free’’ configuration) of the body before applying any external forces or electromagnetic fields.
From this viewpoint, we can neglect the self-magnetic Maxwell stress and rewrite (22)1 as6

div
(

𝝈elast + 𝝈MW
elec

)

= −div(𝝈int
magnet ) = 𝜇0𝐡𝑒div(𝐦𝑟𝜒𝛺) in 𝛺, (25)

which makes solution to the magnetostatic equation(22)2 unnecessary. In other words, the magnetic Piola–Kirchhoff Maxwell stress
in the mechanical balance equation (13)1 could be replaced by

�̃�MW
magnet ≈ −𝜇0𝐡𝑒 ⊗ �̃�𝑟 (26)

if the external magnetic field 𝐡𝑒 is uniform. In the illustrative examples presented in later sections, we will employ the simplified
stress terms (26) for our calculations. We remark that the preceding paragraph justifies the approximate relation (26) used in the
prior work of some of the authors (Zhao et al., 2019).

5 This appears to be a common misconception in the literature on deformable continuum magneto-electro-elasticity. With this said, our ensuring discussion
lso provides justification for why some of the common approximations work well

6 For small deformation and linearized elasticity, this change of reference configuration suffices for predicting elastic fields induced by external loadings
ithout any error. For large deformation and nonlinear elasticity, this approach is an approximation to address the effects of a self-equilibrated force system
8

hich, in our experience, appears to be very good.
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2.2. Symmetry of the Cauchy stress

A frequent contention is that in the context of magnetism ‘‘stress’’ is asymmetric. Usually, such statements emerge due to the
ifference in how the so-called ‘‘stress’’ is identified—see for example the prior work of some of the authors (Zhao et al., 2019).
uppose the total free energy 𝐹 [𝝌 , �̃�, �̃�] of the system admits the following properties:

1. Locality.7 The functional derivative of the free energy with respect to deformation can be written as

𝑑
𝑑𝜀

|

|

|𝜀=0
𝐹 [𝝌 + 𝜀𝝌1, �̃�, �̃�] = ∫𝛺𝑅

𝜮 ⋅ ∇𝝌1𝑑𝐗 = ∫𝛺
1
𝐽
𝜮𝐅𝑇 ⋅ grad𝝌1𝑑𝐱, (27)

where 𝜮 (resp. 𝝈 = 𝜮𝐅𝑇 ∕𝐽 ) is identified as the total Piola–Kirchhoff stress (resp. the total Cauchy stress).
2. Frame-indifference. Let 𝐐(𝑠) = exp(𝑠𝐖) be rigid rotations parametrized by 𝑠 and an arbitrary skew-symmetric matrix 𝐖 ∈ R3×3.

The free energy is invariant under a superimposed rigid rotation:

𝐹 [𝐐(𝑠)𝝌 , �̃�, �̃�] = 𝐹 [𝝌 , �̃�, �̃�].

By (27), the frame-indifference implies that for any skew-symmetric matrix 𝐖 ∈ R3×3,

0 ≡ 𝑑
𝑑𝑠

|

|

|𝑠=0
𝐹 [𝐐(𝑠)𝝌 , �̃�, �̃�] = 𝑑

𝑑𝑠
|

|

|𝑠=0
𝐹 [𝝌 + 𝑠𝐖𝝌 , �̃�, �̃�]

= ∫𝛺𝑅

𝜮 ⋅ ∇(𝐖𝝌(𝐗))𝑑𝐗 = ∫𝛺
1
𝐽
𝜮𝐅𝑇 ⋅𝐖𝑑𝐱.

Therefore, the Cauchy stress

𝝈 ∶= 1
𝐽
𝜮𝐅𝑇

must be symmetric if the free energy is invariant with respect to superimposed rigid rotations.

We remark that the total free energy for the system defined by (5), strictly speaking, is neither local (in the sense of (27)) nor
frame-indifferent because of the applied mechanical boundary condition (the last term of (5)). However, the energy functional at
the absence of applied mechanical traction

𝐹 [𝝌 , �̃�, �̃�] = 𝑈 [𝝌 , �̃�, �̃�] + elec[𝝌 , �̃�] + magnet[𝝌 , �̃�]

is indeed local and frame-indifferent. By (11)1, (12), and (16), we conclude that the total Cauchy stress

𝝈tot ∶= 1
𝐽
�̃�

tot𝐅𝑇 = 𝝈elast + 𝝈MW
elec + 𝝈𝑠

magnet

must be symmetric.
Physically, it is only the divergence of an electromagnetic Maxwell stress that matters for the mechanical balance. Therefore,

it is sometimes convenient to rewrite a complicated symmetric Maxwell stress in a simpler non-symmetric form with the same
divergence, e.g., 𝝈int

magnet → −𝜇0𝐡𝑒 ⊗𝐦𝑟 as in (23).

3. Numerical solution procedure for incompressible materials

The equations in the preceding section can only be solved analytically for simple geometries. To handle non-trivial boundary
value problems we have developed a finite element solution for the our framework. There are several implementations for similar
coupled problems available in the literature (Henann et al., 2013; Zhao and Suo, 2008; Zhao et al., 2019). We use an approach which
enables numerical solutions without using any commercial packages. Our computational procedure for incompressible materials,
with minor modifications, can be used for compressible materials as well. The weak form of the Eqs. (4) and (13) are given as

∫𝑅

∇𝑤1 ⋅ �̃� + ∫𝑅

𝑤1𝜌𝑒 = 0, (28)

∫R3
∇𝑤2 ⋅ �̃� = 0, (29)

∫R3
∇𝐰3 ⋅ �̃�

tot
𝜒𝛺𝑅

= 𝟎 (30)

∫𝛺𝑅

[

𝑤4 (det𝐅 − 1)
]

= 0, (31)

where (𝑤1, 𝑤2,𝐰3, 𝑤4) ∈  and

 ≡{(𝑤1, 𝑤2,𝐰3, 𝑤4)
|

|

|

𝑤1 = 0 on 𝛤𝐷, 𝐰3 = 0 on 𝑆𝐷}. (32)

7 The locality usually refers to the Lagrangian as a local function of the fields. Here, we focus on the functional derivative of free energy with respect to
9

he strain field and the property of locality (27) is slightly more general.
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Fig. 3. The schematic of bilayer HMSE made of two layers with different material properties.

The hydrostatic pressure 𝑎 is a Lagrange multiplier which has been introduced to enforce the incompressibility constraint to avoid
numerical oscillations and volumetric locking. We make use of Taylor–Hood elements which implies that the order of shape functions
used for the discretization of displacement is one order higher than the that for the pressure. The Taylor–Hood elements have
been successfully used in various problems (Chen et al., 2020; Garcia-Gonzalez and Landis, 2020). It can be proved that Taylor–
Hood elements satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condition which is required for the stability of mixed method in
incompressible elasticity and Stokes flow (Babuška, 1971; Brezzi, 1974; Fortin and Brezzi, 1991; Bouklas et al., 2015). Therefore,
we use quadratic interpolation for displacement and linear shape function for electric potential, magnetic potential and hydrostatic
pressure. The actual solution of the equations is through the open-source solver FEniCS (Logg et al., 2012).

4. Illustrative analytical examples

4.1. Magnetoelectricity under tension or compression

Consider the hard magnetic soft electret configuration shown in Fig. 3. This electret consists of two different materials on top
and bottom which are referenced with subscripts 𝑡 and 𝑏, respectively. Let 𝐗 = 𝑋𝐞𝑋 +𝑌 𝐞𝑌 +𝑍𝐞𝑍 be the representation of the points
in the Lagrange coordinates while points in the Euler coordinates are denoted by 𝐱 = 𝑥𝐞𝑥 + 𝑦𝐞𝑦 + 𝑧𝐞𝑧. The top layer has thickness 𝐻𝑡
and thickness of bottom layer is denoted by 𝐻𝑏. There is a layer of charge between two layers with surface charge density 𝑞0. The
material is sandwiched between two mechanically compliant electrodes on top and bottom and short circuit boundary condition
is imposed. There is uniform residual magnetic flux density �̃�𝑟 = 𝜇0𝐌𝑟 = 𝐵𝑟

𝑡 𝐞𝑋 (resp. �̃�𝑟 = 𝐵𝑟
𝑏𝐞𝑋) in top (resp. bottom) layer. The

material will deform in response to an externally applied magnetic flux density 𝐛app = 𝑏app𝐞𝑥 = 𝜇0𝐡𝑒. Since the two layers have
different material properties, deformation in two layers will not be the same.8

Let the deformation gradient tensor for each layer be expressed as

𝐅 = 𝜆𝑡𝐞𝑥 ⊗ 𝐞𝑋 + 𝜆−1∕2𝑡 𝐞𝑦 ⊗ 𝐞𝑌 + 𝜆−1∕2𝑡 𝐞𝑧 ⊗ 𝐞𝑍 for 𝐻𝑏 < 𝑋 < 𝐻𝑏 +𝐻𝑡 (33)

𝐅 = 𝜆𝑏𝐞𝑥 ⊗ 𝐞𝑋 + 𝜆−1∕2𝑏 𝐞𝑦 ⊗ 𝐞𝑌 + 𝜆−1∕2𝑏 𝐞𝑧 ⊗ 𝐞𝑍 for 0 < 𝑋 < 𝐻𝑏 (34)

Considering uniform deformation, thickness of each layer in the deformed configuration may be determined to be:

ℎ𝑡 = 𝜆𝑡𝐻𝑡, (35)

ℎ𝑏 = 𝜆𝑏𝐻𝑏. (36)

Moreover, considering short circuit boundary condition and assuming uniform electric field in both top and bottom layers, electric
fields can be derived to be

𝐞 = −
d𝜉
d𝑥 =

⎧

⎪

⎨

⎪

⎩

𝑉
ℎ𝑡

for ℎ𝑏 < 𝑋 < ℎ𝑏 + ℎ𝑡,

− 𝑉
ℎ𝑏

for 0 < 𝑋 < ℎ𝑏,
(37)

8 It is important to note that unequal deformation in the two layers may lead to the bending. However, for this simplified example, we ignore this contribution
10
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where, using Maxwell’s equations, 𝑉 is determined from the following equation

𝜖𝑡
𝑉
ℎ𝑡

+ 𝜖𝑏
𝑉
ℎ𝑏

= 𝑞0. (38)

We use the incompressible neo-Hookean constitutive relation:

𝑊 𝑒𝑙𝑎𝑠𝑡[𝐅] =
𝐺𝑖
2
(tr(𝐅𝑇𝐅) − 3), for 𝑖 = 𝑡, 𝑏 (39)

here 𝐺 denotes the shear modulus of the material. Assuming constant external magnetic field and using simplified form of the
agnetic Maxwell stress, the equilibrium equations for each layer reduces to

(𝜆2𝑡 −
1
𝜆𝑡
) − 𝜆𝑡�̄�𝑡 +

𝜖𝑡
𝐺𝑡

(

𝑉
ℎ𝑡

)2
= 0, (40)

(𝜆2𝑏 −
1
𝜆𝑏

) − 𝜆𝑏�̄�𝑏 +
𝜖𝑏
𝐺𝑏

(

𝑉
ℎ𝑏

)2
= 0. (41)

where �̄� = 𝜇−1
0 𝐺−1�̃�𝑟 ⋅ 𝐛app and �̄�𝑡 and �̄�𝑏 are the corresponding values of �̄� in top and bottom layers, respectively. We can then

analytically determine the linearized solution for the above equations assuming |𝜆𝑏 − 1| ≪ 1 and |𝜆𝑡 − 1| ≪ 1:

𝜆𝑡 ≈
1

1 − �̄�𝑡∕3
−

𝜖𝑡∕3𝐺𝑡

1 − �̄�𝑡∕3

(

𝐻𝑏𝑞0
𝐻𝑡𝜖𝑏 +𝐻𝑏𝜖𝑡

)2
, (42)

𝜆𝑏 ≈
1

1 − �̄�𝑏∕3
−

𝜖𝑏∕3𝐺𝑏

1 − �̄�𝑏∕3

(

𝐻𝑡𝑞0
𝐻𝑏𝜖𝑡 +𝐻𝑡𝜖𝑏

)2
. (43)

Unless an external electric field is applied to the material, the magnitude of electric Maxwell stress is often negligible. Ignoring the
effect of electric Maxwell stress in Eqs. (42) and (43), we can rewrite the last two equations as

𝜆𝑡 − 1 ≈
𝐵𝑟
𝑡 𝑏

app
𝑡

3𝜇0𝐺𝑡
, (44)

𝜆𝑏 − 1 ≈
𝐵𝑟
𝑏𝑏

app
𝑏

3𝜇0𝐺𝑏
. (45)

With the stretches in each layer at hand, we can determine both the electric field and electric displacement. Electric displacement
in top layer is expressed as �̃� = 𝐷𝑡𝐞𝑋 where 𝐷𝑡 is determined by substituting Eq. (38) into Eq. (37):

𝐷𝑡 ≈ 𝐷𝑖 +
𝑞𝐻𝑡𝐻𝑏𝜖𝑏𝜖𝑡(𝜆𝑏 − 𝜆𝑡)
(𝐻𝑡𝜖𝑏 +𝐻𝑏𝜖𝑡)2

, (46)

where 𝐷𝑖 is the deformation independent part of the electric displacement. For brevity and ease in presentation of equation, we
have assumed 𝐝 ≈ �̃� in derivation of Eq. (46).

For conventional magnetostrictive/piezoelectric composites, magnetoelectric coupling coefficient is defined as (Nan et al., 2008;
Fiebig, 2005)

𝛼𝑖𝑗 =
𝜕𝑃𝑖
𝜕ℎ𝑒𝑗

, (47)

here ℎ𝑒𝑖 and 𝑃𝑗 , respectively, are the components of the magnetic field and electric polarization defined in a linear framework
here there is no difference between reference and current configurations. Also, magnetoelectric voltage coefficient 𝜶ME is defined as
= 𝝐𝜶ME, where 𝝐 is the electric permittivity tensor of the material (Osaretin and Rojas, 2010; Vopson et al., 2017). In experimental

ettings and under closed circuit boundary condition, polarization is often determined by measuring electric charges. This is due
o the reason that when the electric field is zero, electric displacement and electric polarization are equivalent. Similarly, here, we
erform a thought experiment and define the effective ME voltage coupling coefficient for HMSE 𝛼eff

ME as

𝛼eff
ME =

𝜇0
𝜖eff

𝜕𝐷𝑡
𝜕𝑏app , (48)

where 𝜖eff is determined from following equation
𝐻𝑡 +𝐻𝑏

𝜖eff =
𝐻𝑡
𝜖𝑡

+
𝐻𝑏
𝜖𝑏

. (49)

The effective magnetoelectric voltage coefficient of the material can also be written in terms of the output charges 𝛥𝑄 = 𝐷𝑡𝐴 and
he effective capacitance of the material 𝐶eff = 𝜖eff𝐴

𝐻 :

𝛼eff
ME = 1

𝐶eff𝐻
𝜕(𝛥𝑄)
𝜕ℎ𝑒

, (50)

here ℎ𝑒 is the external magnetic field (𝐡e = ℎ𝑒𝐞𝑋), 𝐴 is the surface area of the electrodes and 𝐻 = 𝐻𝑡 +𝐻𝑏 is the total thickness of
the material. Effective voltage coefficient for the hard magnetic soft electret (shown in Fig. 3) is derived by substituting Eq. (42),
11
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Fig. 4. Schematic of HMSE material that undergoes bending deformation in response to applied magnetic field. The gold arrows show the direction of residual
flux density and red circles are electric charges.

(43) and (46) into Eq. (48)

𝛼eff
ME = 1

𝜖eff
𝑞0𝐻𝑡𝐻𝑏𝜖𝑏𝜖𝑡

(𝐻𝑡𝜖𝑏 +𝐻𝑏𝜖𝑡)2
× 1

3

(𝐵𝑟
𝑏

𝐺𝑏
−

𝐵𝑟
𝑡

𝐺𝑡

)

. (51)

If the bottom layer does not deform in response to the magnetic field, 𝛼eff
ME can be further simplified as

𝛼eff
ME = − 1

𝜖eff
𝑞0𝐻𝑡𝐻𝑏𝜖𝑏𝜖𝑡

(𝐻𝑡𝜖𝑏 +𝐻𝑏𝜖𝑡)2
×

𝐵𝑟
𝑡

3𝐺𝑡
. (52)

Several interesting aspects may be noted in Eq. (52). First, the ME voltage coupling coefficient of the HMSE is independent of external
magnetic field. Therefore, as external field approaches zero, 𝛼eff

ME remains unchanged. This behavior is in contrast with the behavior
of ME composites and SMSEs where their ME voltage coupling coefficient vanishes at zero external magnetic field. Also, Eq. (52)
shows 𝛼eff

ME ∝ 𝐵𝑟 for HMSEs while we have shown that for SMSEs 𝛼eff
ME ∝ 𝜇0ℎ𝑒. This implies that the voltage coupling coefficient of

a HMSE with 𝐵𝑟 ∼ 1T under external field ∼ 1mT is three orders of magnitude larger than a SMSE material under same external
magnetic field.

4.2. Flexure deformation and magnetoelectricity

Flexure is arguably the most suitable deformation mode for energy harvesting and therefore it is of interest to explore the ME
effect under bending. We also remark that the resonance frequency of the bending model is smaller than for tension and compression.
Finally, since bending is inherently a non-uniform deformation process, a strong electromechanical coupling can be generated in
electret materials (Rahmati et al., 2019) which may then amplify the magnetoelectric response. Pertaining to this, we note that it is
not easily possible to create bending deformation with SMSE materials however this is quite simple in the context of hard magnetic
soft materials as already demonstrated in past work (Zhao et al., 2019). The flexure problem for HMSE materials is rather difficult
to solve analytically however we attempt an approximate solution using Euler–Bernoulli beam theory assumptions (Fig. 4). We will
comment on the accuracy of the results in the next section where we will present numerical solutions.

Consider the hard magnetic material shown in Fig. 4. The residual magnetic flux density of the material is uniformly aligned
along the axis of the beam �̃�𝑟 = 𝐵𝑟𝐞𝑋 . Due to the pattern of residual magnetic dipoles, this particular configuration undergoes
bending deformation in response to applied magnetic field across the thickness of the material. We assume the deformation is small
(|∇𝐮| ≪ 1) and the effect of the Maxwell stress is negligible. The applied magnetic flux density is denoted by 𝐛app = 𝑏𝑎𝑝𝑝𝐞𝑌 . Using
Euler–Bernoulli beam theory, the displacement 𝐮 can be expressed as

𝐮 = −𝑌
𝜕𝑢𝑌
𝜕𝑋

𝐞𝑋 + 𝑢𝑌 𝐞𝑌 . (53)

We assume a unit width for the beam and use Euler–Bernoulli theory to express the internal energy of the material as

𝑈 [𝑢𝑌 ] = ∫

𝐿
(

3𝐺𝐼
(

𝜕2𝑢𝑌
2

)2

− 𝐻 𝜕𝑢𝑌 𝑏𝑎𝑝𝑝𝐵𝑟

)

d𝑋. (54)
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The moment of inertia for beam with unit width is 𝐼 = 1
12𝐻

3. The equilibrium equations of the beam is derived using standard
calculus of variation.

d𝑈 [𝑢𝑌 + 𝜀𝜂]
d𝜀

|

|

|

|𝜀=0
= ∫

𝐿

0

(

3𝐺𝐼
𝜕2𝑢𝑌
𝜕𝑋2

𝜕2𝜂
𝜕𝑋2

− 𝐻
𝜇0

𝜕𝜂
𝜕𝑋

𝑏𝑎𝑝𝑝𝐵𝑟
)

d𝑋 =

(

3𝐺𝐼
𝜕2𝑢𝑌
𝜕𝑋2

𝜕𝜂
𝜕𝑋

) ]𝐿

0
−
(

3𝐺𝐼
𝜕3𝑢𝑌
𝜕𝑋3

𝜂 + 𝐻
𝜇0

𝑏𝑎𝑝𝑝𝐵𝑟𝜂
) ]𝐿

0

+ ∫

𝐿

0

[

𝜂 𝜕
𝜕𝑋

(

3𝐺𝐼
𝜕3𝑢𝑌
𝜕𝑋3

+ 1
𝜇0

𝑏𝑎𝑝𝑝𝐵𝑟
)]

d𝑋 = 0.

(55)

Thus, the deflection of cantilever beam may be obtained by solving the following system of equations

𝜕
𝜕𝑋

(

3𝐺𝐼
𝜕3𝑢𝑌
𝜕𝑋3

+ 1
𝜇0

𝑏𝑎𝑝𝑝𝐵𝑟
)

= 0,

𝑢𝑌 (𝑋 = 0) =
𝜕𝑢𝑌
𝜕𝑋

|

|

|

|𝑋=0
=

𝜕2𝑢𝑌
𝜕𝑋2

|

|

|

|𝑋=𝐿
= 0,

(

3𝐺𝐼
𝜕3𝑢𝑌
𝜕𝑋3

+ 𝐻
𝜇0

𝑏𝑎𝑝𝑝𝐵𝑟
)

|

|

|

|𝑋=𝐿
= 0.

(56)

onsidering a uniform magnetic field and uniform residual magnetic field, the magnetic field induced deflection of the beam can
imply be obtained by solving system of Eqs. (56)

𝑢𝑌
𝐿

= 2(𝐴𝑅)2 𝑏
𝑎𝑝𝑝𝐵𝑟

𝐺𝜇0

(

( 𝑥
𝐿
)2 − 1

3
( 𝑥
𝐿
)3
)

, (57)

where 𝐴𝑅 = 𝐿∕𝐻 is the aspect ratio of the material. Thus, the local curvature of the beam 𝜅 = 𝜕2𝑢
𝜕𝑥2

is determined as

𝜕2𝑢
𝜕𝑥2

= 𝑏𝑎𝑝𝑝𝐵𝑟

𝐺𝜇0
4𝐿
𝐻2

(

1 − 𝑥
𝐿

)

. (58)

We cannot use the solution provided in this section to determine output charge of a hard magnetic soft electret under bending
eformation because it was a linear decoupled problem. The relation between magnetic field and curvature is illustrated in Eq. (58).
o obtain an analytical relation between the output charge and magnetic field, the fully coupled problem has to be solved which is
rather difficult nonlinear problem. However, Rahmati et al. (2019) presented a simple relationship between curvature and output

harge for an electret under pure bending. According to their model, the output charge is related to curvature 𝜅 through 𝐷𝑡 = 1
4 𝑞0𝐻𝜅

here 𝑞0 is the surface charge density at the interface of two materials. Therefore, for illustrative purposes, the scale of the output
harge for a hard magnetic soft electret with uniform distribution of residual magnetic flux density under bending deformation can
e roughly approximated as

𝐷𝑡 ∝ 𝑏𝑎𝑝𝑝𝐵𝑟

𝐺𝜇0
𝐴𝑅𝑞0, (59)

and, as a result, we have

𝛼ME ∝ (𝐴𝑅)𝐵
𝑟

𝐺
𝑞0
𝜖eff . (60)

Eq. (60) shows that the ME voltage coupling coefficient of the material shown in Fig. 4 linearly depends on the aspect ratio of the
material. We may infer the following from this simple approximate result that the ME voltage coupling coefficient of the HMSE under
bending deformation is independent of external magnetic field. In addition, by comparing Eqs. (52) and (60) it is seen that the ME
voltage coupling of the material is linearly increased by increasing interface charges or by increasing residual magnetic flux density
for both bending and tension compression deformation. Also, the relation (60) shows that the ME voltage coupling coefficient of the
HMSE under bending deformation linearly depends on the aspect ratio of the material. This is in contrast to the ME voltage coupling
coefficient of the HMSE under tension/compression deformations. As the length of the material can be several orders of magnitude
larger than the thickness of the material, the ME voltage coupling coefficient of the HMSE under bending deformation can be several
orders of magnitude larger than ME voltage coupling coefficient of the HMSE under tension/compression deformation.

4.3. Shape programmable property of HMSEs

Hard magnetic soft elastomers can be quite easily programmed to develop any desirable deformation in response to external
magnetic field by designing the residual flux density profile of the material (Gong et al., 2020). As the ME response of the material
directly depends on the actuation strain in these materials, the ME response too can be designed by suitably programming the
residual flux density. The profile of the residual flux density in these materials depends on the deformation imposed on the material
during magnetization step. In this section, we will show that if the material is held in a bent configuration during the magnetization
step, the residual magnetic profile of the material will reflect this bent shape. This behavior can be generalized to any desired pattern
of deformation. We have chosen flexure deformation mode for illustrative purpose because our theoretical calculations showed that
the ME effect mediated with bending deformation can lead to a significantly strong ME effect (Eq. (60)). We calculate the profile for
13
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Fig. 5. The steps for creating a programmable hard magnetic soft electret. (a) Initially the average magnetization of the material is zero and magnetic micro-
particles are randomly oriented. (b) The desired deformation (which is bending in this case) is induced in material by applying bending moment 𝑀 and the
pre-magnetization magnetic field is applied to the material. The magnetic particles re-align themselves with external field. The gold arrows show the orientation
of magnetic particles and arrows with gradient color show the direction of external magnetic field. (c) The imposed deformation and applied magnetic field is
removed but the magnetic particles retain their orientation.

residual magnetic flux density of the material in this section and subsequently use a numerical approach (next section) to evaluate
the ME response.

Fig. 5 illustrates the three steps for the creation of a PHMSE which bends in response to magnetic field. Initially, the magnetic
dipoles of the magnetic micro-particles inside the material are randomly oriented and the residual magnetic flux density of the
material is zero(Fig. 5a). In the second step, a pure bending deformation is imposed to the material and a large external magnetic
field is imposed on the structure(Fig. 5b). The deformation gradient tensor for this deformation is denoted by 𝐅b. In this step,
magnetic dipoles of the micro particles rotate and align themselves with the external field and, as a result, a net magnetic flux
density is created inside the material. The re-alignment of the magnetic dipoles of the magnetic micro particles itself does not create
any substantive deformation in the material.This re-alignment is due to the rotation and magnetic alignment of the magnetic dipoles
and not because of the mechanical rotation of magnetic micro-particles. Due the high coercivity and high residual magnetic flux
density of NdFeB micro particles, subsequent to the alignment, the magnetization profile remains stable even after the magnetization
magnetic field of step two has been turned off. Thus, in the last step, we remove the magnetic field used to magnetize the material and
reverse the deformation. The magnetic micro particles are anchored to the matrix material and they rotate as the material element
rotates. Therefore, the reversed deformation developed from step two to step three leads to creation of the residual magnetic flux
density profile shown in Fig. 5c.

We denote the magnetic flux density in step three by �̃�𝑟. The residual magnetic flux density in the configuration shown in the
step two is denoted by 𝐛mag and is expressed as

𝐛mag = −𝐵𝑟cos(𝜃)𝐞𝑟 + 𝐵𝑟sin(𝜃)𝐞𝜃 (61)

The magnetic flux densities 𝐛mag and �̃�𝑟 are related to each other through the third of Eq. (3) �̃�𝑟 = det(𝐅b)𝐅−1
b 𝐛mag. Therefore,

we need to determine the deformation 𝐅b in order to determine the profile for magnetization flux density. The analytical solution
for large elastic deformation of material under pure bending was first presented by Rivlin (1949). Motivated by Rivlin’s solution,
recently we have derived the solution for bending deformation of electret materials (Rahmati et al., 2019). We simply present the
final expression for 𝐅b. The reader is referred to Rivlin (1949) and Rahmati et al. (2019) for further details.

The material point in the undeformed configuration (step one and three) are denoted by 𝐗 = 𝑋𝐞𝑋 + 𝑌 𝐞𝑌 . The spatial points
in step two are denoed by 𝐫 = 𝑟𝐞𝑟. For a deformation that is a pure symmetric plane strain bending such that material point each
plane originally located in plane with normal 𝐞𝑌 (resp. 𝐞𝑋) will transfer to a plane with normal 𝐞𝑟 (resp. 𝐞𝜃) as a result of this
deformation. The desired bending angle 𝛼 (see Fig. 5b) is achieved by controlling the bending moment applied to the material.
Stipulating incompressibility, the deformation gradient 𝐅𝑏 is determined as

𝐅b = 𝐿 𝐞𝑟 ⊗ 𝐞𝑌 +
2𝛼 × 𝑟(𝑌 ) 𝐞𝜃 ⊗ 𝐞𝑋 , (62)
14
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F

where

𝑟(𝑌 ) =

√

(𝑟22 − 𝑟21)
𝑌
𝐻

+
𝑟22 + 𝑟21

2
, 𝜃(𝑋) =

(2𝑌 − 𝐿)𝛼
𝐿

. (63)

and 𝑟1 and 𝑟2, respectively, are radii of curved surfaces initially located at 𝑌 = 0 and 𝑌 = 𝐻 (Fig. 5b). For a neo-Hookean constitutive
response and traction-free boundary surfaces normal to 𝐞𝑟, 𝑟1 and 𝑟2 may be determined by solving the following nonlinear system
of algebraic equation

𝐿
𝛼

=
𝑟22 − 𝑟21
𝐻

,
( 𝑟2 − 𝑟1

𝐻

)4
=

16
𝑟22
𝑟21

(

𝑟2
𝑟1

+ 1
)4

. (64)

inally, the magnetic flux density at each point of PHMSE is determined substituting Eqs. (61) and (62) into third of Eq. (3)

�̃�𝑟 = 𝐵𝑟𝐿
2𝛼𝑟(𝑌 )

sin [𝜃(𝑋)] 𝐞𝑋 −
2𝐵𝑟𝛼𝑟(𝑌 )

𝐿
cos [𝜃(𝑋)] 𝐞𝑌 . (65)

Clearly, the obtained profile for the residual flux density restores information about the deformed configuration in the magnetization
step. We will use this profile in the subsequent section in our numerical simulations. Unless otherwise stated, we set value of
𝐵𝑟 = 0.0767 𝑇 and use the profile given in Eq. (65) in all simulation results.

5. Numerical results, comparison with experiments and discussion

In this section, we use the formulation presented in Section 3 to simulate the ME behavior of HMSE and PHMSEs using the
open source finite element code, FEniCS. In order to check accuracy of our computational model, first we compare our results with
the available theoretical, experimental and numerical results. Then, we present solutions for the bending deformation of HMSEs
and PHMSEs. Throughout this section, we have assumed that the external magnetic field is constant and the simplified form of the
magnetic Maxwell stress (26) has been used. We use the incompressible neo-Hookean constitutive law given in the Eq. (39) and
plane strain conditions. Unless otherwise stated, Young’s elastic modulus of the material is set to 55 KPa, the magnitude of the
residual flux density is 𝐵𝑟 = 0.0767, the electric permittivity of the material is equal to 𝜖 = 5.0676𝜖0 and the interface charge density
is 𝑞0 = 0.0488 mC/m2. Also, the length and the thickness of the sample, respectively, are set to be 𝐿 = 22 mm, 𝐻 = 1.85 mm. These
numerical values are consistent with the material fabricated and examined by the Qian Deng Research Group.

5.1. The bending deformation of hard magnetic soft elastomer without electrets

As the first step of our analysis, we simulate the material shown in the Fig. 4 without considering effects of external charges
(𝜌𝑒 = 0). The residual flux density is uniformly aligned with the axis direction of the material and an external magnetic field is
applied across the thickness of the material. This problem has been solved by Zhao et al. (2019) both numerically (using an ABAQUS
UMAT) and experimentally. Fig. 6 shows that there is an excellent agreement between our finite element results and the experimental
and simulation results given by Zhao et al. (2019). Fig. 6(a) compared the deformed configuration from our simulation with the
experimental observations for two materials with two different aspect ratios under the same magnetic field. Also, Fig. 6(b) shows
that the deflection versus dimensionless magnetic field for materials with different aspect ratios and we see excellent agreement
with Zhao et al. (2019).

5.2. Magnetoelectric energy harvesting using parallel plate capacitor made of hard magnetic soft elastomer

In the next step, we illustrate the ability of electric energy harvesting by applying an external magnetic field to a parallel plate
capacitor made of hard magnetic soft elastomer and compare the numerical results with analytical results. Consider the material
shown in Fig. 7(a) where residual magnetic field is aligned parallel with the thickness direction of the material. A voltage difference
𝑉 has been applied across the thickness of the material. Once a magnetic field is applied to the material along the thickness direction
and in the opposite direction with respect to residual field, the material tends to compress. This compression increases the electric
field inside the material and enables material to do work on the boundary electric device. This work can be determined as

𝑊 = −∫𝛤𝐷

[

𝜉𝑏
(

�̃� − �̃�𝑖
)

⋅ 𝐍
]

, (66)

where �̃�𝑖 = lim𝐁𝑎𝑝𝑝→𝟎 �̃�. The value of 𝑊 can be determined analytically. The procedure for analytical solution is very similar to what
was mentioned in Section 4.1. The only difference is that, here, we enforce a plane strain condition to be consistent with numerical
calculations. Under plane strain condition, equilibrium equation is written as

(𝜆4 − 1) − 𝜆3 �̃�
𝑟 ⋅ 𝐛𝑎𝑝𝑝 + 𝜖 ( 𝑉 )2

= 0, (67)
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Fig. 6. Comparison of the current numerical solution with experimental and simulation results given by Zhao et al. (2019). (a)The deformed configuration
observed in the simulation versus the experiment for |𝐛𝑟 ||𝐛app

|

𝐺𝜇0
= 0.0094 and 𝐴𝑅 = 𝐿

𝐻
= 10. Color contours show the magnitude of dimensionless displacement. (b)

Comparison of simulation and experimental results for vertical displacement of the tip of the beam under different external magnetic fields.

Fig. 7. The electric energy harvesting by applying magnetic field to a parallel plate capacitor made of hard magnetic soft elastomer. (a) Schematics of a material
under electric voltage difference 𝑉 . (b) Comparison of theoretical results and simulation results for the electric energy harvested by applying a magnetic field
to a parallel plate capacitor made of hard magnetic soft elastomer.

where 𝜆 is the stretch along the thickness direction. Assuming |𝜆 − 1| ≪ 1, above equation can be linearized and solved for 𝜆. The
calculated value of the stretch can be substituted in Eq. (66) to determine energy harvested at the boundary. Therefore, the electric
work done on the boundary electric device for 𝐺−1𝜇−1

0 |𝐛𝑟||𝐛𝑎𝑝𝑝| ≪ 1 is determined as

�̄� = 𝑊
𝐴

×

(

𝜖 𝑉
𝐻

×
|𝐛𝑟||𝐛𝑎𝑝𝑝|
𝐺−1𝜇−1

0

)−1

≈ 8 − 4�̄�2
(

4 − 3�̄�2
)2

, (68)

where 𝐴 is the top surface area of the material. Also, dimensionless electric energy �̄� is defined as

�̄� = 𝑉
𝐻

√

𝜖
𝐺

(69)

The relation (68) has been used to generate Fig. 7(b). Good agreement is seen between our analytical results and simulations.
Also, it is clear in the relation (68) that �̄� is independent of the magnetic field and only depends on dimensionless electric field.
Our numerical solution for compression problem also shows that �̄� is independent of magnetic field. Therefore, we can conclude
16
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Fig. 8. Schematic of the PHMSE. The gold arrows show the direction of residual magnetic field.

Fig. 9. Mesh convergence study.

that magnetic field will not change �̄� in the compression problem under small strain assumption. In the other words, according
to Eq. (68), the amount of electric energy can be harvested at the boundary 𝑊 linearly increases as dimensionless magnetic field
𝐺−1𝜇−1

0 |𝐛𝑟||𝐛𝑎𝑝𝑝| increases.

5.3. The magnetoelectric effect in PHMSEs

In the next step, we simulate the behavior of the PHMSE shown in Fig. 8. The profile of the residual magnetic flux density is
given in the Eq. (65). We assume the material is cantilevered from the left end and a magnetic field across its thickness is applied
(𝐡𝑒 = ℎ𝑒𝐞𝑌 ). The short circuit electrical boundary condition 𝜉 = 0 has been applied to surfaces 𝑌 = ±𝐻∕2. The deformation is fully
constrained on the cantilever side of the beam (𝑋 = 0). Unless otherwise stated, a layer of external charges with the surface charge
density 𝑞0 = −0.048 mC/m2 has been inserted to the material at 𝑌 = 0. Due to existence of interface charges, the electric potential
inside the material is not zero even in absence of the external loading. Therefore, we have to compare the solution in two states,
in presence and absence of the externally applied magnetic field, in order to determine generated voltage inside the material. We
identify the generated electric potential 𝜉 − 𝜉0, where 𝜉0 is the electric potential of the system determined at 𝐡e = 𝟎. Similarly, the
output charge 𝛥𝑄 over surface area of the electrode 𝐴 can be determined as

𝛥𝑄
𝐴

= 1
𝐿 ∫

𝐿

0

(

𝐷𝑓 (𝑋) −𝐷𝑖(𝑋)
)

d𝑋, (70)

where 𝐷𝑓 is defined as 𝐷𝑓 = (�̃� ⋅ 𝐞𝑌 )|𝑌=𝐻 determined at 𝐡e = ℎ𝑒𝐞𝑌 . Also, 𝐷𝑡 is defined as 𝐷𝑡 = (�̃� ⋅ 𝐞𝑌 )|𝑌=𝐻 determined at 𝐡e = 𝟎.
The ME voltage coupling coefficient is calculated substituting Eq. (70) into Eq. (50)

𝛼eff
ME = 1

𝜖𝑒𝑓𝑓
𝜕
𝜕ℎ𝑒

(

1
𝐿 ∫

𝐿

0
𝐷𝑓 (𝑋)d𝑋

)

. (71)

We have ensured mesh convergence for our FENICS calculations (see Fig. 9). Fig. 10 compares our simulation results with
experimental observations for this problem and good agreement is found. The material has the dimensions of 35 × 12 × 0.8 mm,
Young’s elastic modulus of 59.4 KPa and density of 1980 Kg∕m3. As Figs. 10a and 10b show, in this experiment, the material
is hanging from a top surface where displacement was fully constrained. We have included effect of gravity in our simulations.
The shape programmable ability of the PHMSE is illustrated in this figure where a uniform magnetic field leads to a non-uniform
17
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Fig. 10. The deformed configuration observed in the experiment versus the deformed configuration obtained using FE model for the PHMSE under different
(a) positive and (b) negative magnetic fields. (c) Comparison of experimental and numerical results for deflection of the material under different values of the
magnetic field.

Fig. 11. The numerical results showing ME effect in PHMSE. (a) Contour plots showing changes observed in the distribution of electric potential in response to
the applied magnetic field. (b) Dimensionless deflection of the tip point for beams with different aspect ratios. (c) Dimensionless output charges harvested at two
electrodes attached to the surface of material in response to applied magnetic field. (d) The ME voltage coupling coefficient versus applied external magnetic
field.

deformation. Also, it is clear that the deformation is not symmetric with respect to the magnetic field. This is because the direction
of residual magnetic field is not symmetric. Therefore, as the direction of the applied magnetic field is reversed, the direction of the
deformation does not reverse completely.
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Fig. 12. The contours of (a) dimensionless generated electric potential (b-d) and strain components for PHMSE where 𝐄 = 𝐅𝑇 𝐅 − 𝐈.

Fig. 11a shows the deformed configuration and contours of generated dimensionless electric potential for different values of
magnetic fields. The dimensionless electric potential is defined as 𝜖(𝜉 − 𝜉0)∕(𝑞0𝐻), where 𝜉, 𝜖, 𝑞0 and 𝐻 , respectively, are electric
potential, electric permittivity, surface charge density at the interface and the thickness of the material. The potential 𝜉0 is the
electric potential at each point in absence of external magnetic field. This figure shows that the applied magnetic field changes
the distribution of electric potential and the electric field is generated within the material in response to applied magnetic. The
generated electric field increases as external magnetic field increases. The contours of generated electric potential are compared
with strain components in Fig. 12. Evidently, inhomogeneous strain leads to the presence of electric potential difference and this
implies that emergence of electric potential difference and ME effect is mediated by strain gradients. It is convenient to achieve
magnetoelectric coupling through bending deformation since bending is one of the simplest way to induce strain gradient in the
material without using a composite structure (last section).

The dimensionless vertical displacement of the tip point of the beam is shown in Fig. 11b for beams with different aspect ratios
(AR = 𝐿∕𝐻). Also, the dimensionless output charges 𝛥𝑄

𝐴𝑞0
(calculated using (70)) versus applied dimensionless magnetic field 𝐵𝑟𝑏𝑎𝑝𝑝

𝜇0𝐺
is plotted in Fig. 11c. A larger deflection and output charge is observed for the materials with larger aspect ratios under small
magnetic fields. However, as the magnetic field increases, the deflection and output charges increase until they reach a plateau
where maximum deflection and output charges have been reached. For beams with greater ARs, the maximum deflection is reached
at smaller magnetic fields. In addition, we observe that the deformation (and consequently output charges) is not symmetric with
respect to the applied magnetic field. This is because the residual field is not symmetric. Fig. 13 shows a symmetric behavior in
HMSEs with residual field uniformly aligned along the axis of the beam (�̃�𝑟 = 𝐵𝑟𝐞𝑋). Fig. 13 shows that for the material with a
symmetric alignment of the residual field, imposing external magnetic fields with opposite signs will lead to deflections (Fig. 13b),
output charges (Fig. 13b) and magnetoelectric voltage coupling coefficients (Fig. 13c) with the opposite sign.

We show, using Fig. 11, that external magnetic field induces bending and electric charges can be harvested at the electrodes
attached to the surface of material in response to the bending. This resulting magnetoelectric effect can be quantified using the
magnetoelectric voltage coupling coefficient. The ME voltage coupling coefficient of the PHMSE is numerically calculated using
relation (71). The voltage coupling coefficients versus magnetic field for PHMSEs with different aspect ratios are plotted in Fig. 11d.
A giant value (greater than 1 Vcm−1Oe−1) for voltage coupling coefficient of the material is reported at zero external magnetic
field. The ME voltage coupling at zero magnetic field increases as the aspect ratio increases. This shows that PHMSEs not only
enable substantially large ME coupling but they make it unnecessary to have a bias magnetic field. Thus hard magnetic soft electret
form a unique class of materials which provide soft and biocompatible magnetoelectric property which is significantly sensitive to
19
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Fig. 13. The numerical results showing ME effect in hard magnetic soft electrets with uniform residual magnetic field. (a) Contour plots showing changes observed
in the distribution of electric potential in response to the applied magnetic field for a beam with aspect ratio of AR = 15. (b) Dimensionless deflection of the
beam. (c) Dimensionless charges harvested at two electrodes attached to the surface of material in response to applied magnetic field. (d) The magnetoelectric
voltage coupling coefficient versus applied external magnetic field.

Fig. 14. The effect of surface charge density in ME effect in PHMSEs under bending deformation. (a) FE results for electric charge harvested versus external
magnetic field for different values of interface charge density. (b) FE results for the ME voltage coupling coefficient versus surface charge density of the interface.

weak magnetic fields. This value is even comparable with highest values of the ME voltage coupling coefficients of polymer based
magnetoelectric composites.

Effect of interfacial charge density. There is a direct relationship between interface charge density and the amount of charge
that can be harvested from the PHMSEs under magnetic field induced bending deformation. Results obtained from our finite element
model shows that the larger the interface surface charge density is, more electrical energy can be harvested (14a). The voltage
coupling coefficient versus interface surface charge density for PHMSEs under different external magnetic field is plotted in Fig. 14b.
A linear relation between ME voltage coupling coefficient of the material and interface charge density is observed.

Effect of deformation resulting from the magnetization step. The magnetoelectric effect in PHMSEs may be impacted by
the initial curvature induced in the material in the magnetization stage. The initial curvature is controlled by bending angle 𝛼 (see
20
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Fig. 15. The effect of bending angle in the pre-magnetization stage on the harvested electric charges of PHMSE. The length of the beam is 35 mm and its
thickness is 0.8 mm. Also, 𝑞0 = 0.1 mC/m2.

the inset of Fig. 15) which has a direct impact on the profile of residual magnetic flux density given in Eq. (65). The effect of
bending angle in magnetization stage on the ME effect of the PHMSE is studied in the Fig. 15. Evidently, the output charge can be
modified by changing the bending angle in the pre-magnetization stage. This is a proof of concept that shows PHMSE materials can
be customized to show desired actuation and magnetoelectric effect that may be tailored for a particular application. We remark
that past work has shown that hard magnetic soft materials can be easily programmed to actuate into very complex configurations
in response to uniform external magnetic field. Thus, very complex electric signals can be produced in response to applied magnetic
field (Gong et al., 2020) paving the way for remote transfer of information.

6. Concluding remarks

In summary, we have introduced hard magnetic soft electret materials as a new class of materials which enable large deformation
and a strong magnetoelectric coupling in one single material. In sharp contrast to magnetoelectric composite materials and recently
developed soft magnetic electret materials, we show that the magnetoelectric effect in hard magnetic electrets is independent of the
externally applied magnetic field. Indeed, hard magnetic soft electrets show a significant magnetoelectric coupling at infinitesimal
magnetic fields without the need for any bias magnetic field. Our investigation indicates that the room-temperature magnetoelectric
voltage coefficient in a simple bi-layer hard magnetic soft electret is as high as 332.7 mVcm−1 Oe−1 and furthermore can be easily
programmed to exhibit a ME effect mediated by desired deformation. A ‘‘giant’’ voltage coupling coefficient of greater than 15.36
Vcm−1 Oe−1 is possible in elastically homogeneous programmable hard magnetic soft electrets at resonance frequency of 6 Hz when
the magnetoelectric effect is mediated by bending deformation. Several avenues for future work are possible: biology c.f. Torbati
et al. (2022), topology optimization (Zhao and Zhang, 2022), multiscale computational modeling in analogy with developments in
electrostatics (Marshall and Dayal, 2014), temperature sensitive design as done in the context of ferroelectrics (Mbarki et al., 2014),
templated structures c.f. Alizadeh et al. (2004), design of soft magnetic material at the chain level using statistical mechanics as
done recently in the context of electrostatics (Cohen et al., 2016; Grasinger and Dayal, 2020; Grasinger et al., 2021), exploration of
instability mechanisms c.f. Yang et al. (2017), among others.
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