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A B S T R A C T

Origami is a scale invariant paradigm for morphing robotics, deployable structures (e.g.
satellites, disaster relief shelters, medical stents), and metamaterials with tunable thermal,
mechanical, or electromagnetic properties. There has been a resurgence of interest in using
origami principles – along with 2D materials or DNA – to design a wide array of nanoscale
devices. In this work, we take cognizance of the fact that small-scale devices are vulnerable to
entropic thermal fluctuations and thus a foundational question underlying small-scale origami
pertains to its stability, i.e. the origami structure’s propensity to ‘‘unfold’’ due to thermal
fluctuations and the rate at which the unfolding will ensue. To properly understand the behavior
of these origami-based nanodevices, we must simultaneously consider the geometric mechanics
of origami along with the interplay between thermal fluctuations, entropic repulsive forces,
van der Waals attraction, and other molecular-scale phenomena. In this work, to elucidate the
rich behavior underpinning the evolution of an origami device at the nanoscale, we develop a
minimal statistical mechanics model of folded nanoscale sheets. We use the model to investigate
(1) the thermodynamic multistability of nanoscale origami structures and (2) the rate at which
thermal fluctuations drive its unfolding—that is, its temporal stability. We identify, for the
first time, an entropic torque that is a critical driving force for the unfolding process. Both
the thermodynamic multistability and temporal stability have a nontrivial dependence on the
origami’s bending stiffness, the radii of curvature of its creases, the ambient temperature, its
thickness, and its interfacial energy (between folded layers). Specifically, for graphene, we show
that there is a critical side length below which it can no longer be folded with stability; similarly,
there exists a critical crease diameter, membrane thickness (e.g. for multilayer graphene), and
temperature above which a crease cannot be stably folded. To investigate the rate of thermally
driven unfolding, we extend Kramers’ escape rate theory to cases where the minima of the
energy well occurs at a boundary. Rates of unfolding are found to span from effectively zero to
instantaneous, and there is a clear interplay between temperature, geometry, and mechanical
properties on the unfolding rate.

. Introduction

Origami engineering is rapidly emerging as an important modality to create novel classes of metamaterials. Such ‘‘materials’’ may
isplay properties that are not found in natural materials, offer prospects for tuning thermal (Boatti et al., 2017), mechanical (Liu
t al., 2022; Miyazawa et al., 2021; Misseroni et al., 2022; Zhai et al., 2020; Silverberg et al., 2014; Schenk and Guest, 2013; Liu
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et al., 2018; Grasinger et al., 2022; Pratapa et al., 2019; Brunck et al., 2016) or electromagnetic (Sessions et al., 2019) response
and are anticipated to find applications in fields ranging from robotics (Novelino et al., 2020; Wu et al., 2021; Fang et al., 2017),
mechanologic (Treml et al., 2018), deployable civil engineering structures to cloaking devices. Extensive literature already exists
in this context that runs the gamut from fundamental design rules, mathematical theorems (Kawasaki, 1991; Lang, 2017; Demaine
and O’Rourke, 2007; Belcastro and Hull, 2002), fabrication paradigms, and discipline-specific applications.

Our focus in this work is origami behavior at the small scale. The literature is rife with proposals for myriad applications of
olecular origami such as targeted drug delivery (Jiang et al., 2019; Udomprasert and Kangsamaksin, 2017; Weiden and Bastings,
021; Ge et al., 2020; Chandrasekaran et al., 2016), nanorobotics (Liu et al., 2023), energy harvesting at the nanoscale, optics (Cho
t al., 2011), and molecular origami nanocomposites (Zhao et al., 2022, 2021)–which combine the novel behaviors of origami-based
etamaterials (e.g. auxetic materials (Pratapa et al., 2019), tunable stiffness (Silverberg et al., 2014) and thermal expansion (Boatti

t al., 2017), phononic metamaterials, space–time metamaterials) with the high strength-to-weight ratios of composites.
While there are still several open issues in modeling of large-scale origami,1 the field is developing rapidly. In contrast, both

experimentally and theoretically, nanoscale origami is relatively at its infancy. Aside from the challenges of fabrication, the key
difference between small-scale origami and its counterpart at macroscopic length scale is due to the anticipated influence of
thermal fluctuations. A good analogy may be drawn by comparing a conventional micron-scale thin film to a graphene sheet. While
entropic effects are irrelevant for the thin film, their influence on graphene strongly dictates both its mechanical and electronic
behavior (Ahmadpoor et al., 2017; Fasolino et al., 2007; Thibado et al., 2020; De Parga et al., 2008). Thus, the central question may
be posed as follows: how stable is a small-scale origami structure to thermal fluctuations? To address this, in our work, we consider
the simplest possible embodiment that may be regarded as a proxy for the origami structure i.e. a folded sheet with a crease. Even
this simple system is expected to show very rich behavior. This may be understood easily by a few examples. Consider two elastic
sheets in thermal equilibrium. Both will undergo thermal fluctuations. The strength of the fluctuation is dictated by the energy cost
parametrized by the elasticity of the sheets. Given that elastic energy cost of a fluctuation of a thin sheet is much lower than that of a
thicker one, we can easily understand why 2D materials like graphene or biological cell membranes fluctuate noticeably while such
effects can be neglected in micron or larger thickness films. If the thin sheets are far enough from each other then they will fluctuate
independently. As the sheets are brought closer together, each sheet will hinder the allowed fluctuations of the other. This hindrance
reduces the entropic freedom and thus increases the free-energy of the 2-sheet system. In other words, this steric hindrance results in
a repulsive force of entropic origin that is now well-known to vary as 1∕𝑑3, where 𝑑 is separation between parallel thin sheets. This
result is well-recognized in the biophysics community and has been extensively studied c.f. Helfrich (1978), Helfrich and Servuss
(1984), Hanlumyuang et al. (2014), Freund (2013), Lu and Podgornik (2015), Wennerström and Olsson (2014), Mozaffari et al.
(2021) and Liang and Purohit (2018) as well in applications related to 2D materials (Ahmadpoor et al., 2022; Zhu et al., 2022) and
even polycrystals (Chen and Kulkarni, 2015). The entropic repulsive force in that context has wide-ranging implications from cell
fusion, endocytosis, self-assembly among others. In our context, a folded sheet that serves as a proxy for origami structure is even
more complex. First, the two halves of the folded sheet are likely to be in close proximity so the repulsive force is expected to be
quite significant; second, the folded edge provides a strong constraint on the problem and thus the fluctuations are not homogeneous
but vary along the length of the sheet. In other words, the crease at the fold provides for a hinge around which the folded structure
could potentially unfold with the entropic repulsive force that varies spatially. The close proximity of the two halves of a folded
sheet also imply the strong (likely) role of a competing attractive force: the van der Waals attraction.

We cite several recent interesting works that have modeled (largely numerical) some facet of origami or folding/unfolding of
thin sheets e.g. Mannattil et al. (2022) examined a single-bar joint system, Rocklin et al. (2018) modeled folding mechanisms of
thin sheets, Yong and Mahadevan (Yong and Mahadevan, 2014) performed non-equilibrium simulations to elucidate the shape
transitions in plates, and Yang et al. (2021) performed molecular dynamics simulations to look at folded graphene sheets. These
works are valuable contributions but differ from ours in that we attempt to provide an analytical paradigm to understand the various
mechanisms that control the unfolding of a folded sheet with a crease. In particular, our model approach provides a transparent
framework that segregates and accounts for the interplay of the various forces that operate at small-scale e.g. entropic repulsion
due to thermal fluctuations, van der Waals attraction and nonlinear geometrical mechanics. Finally, an important element of our
treatment of the statistical mechanics problem pertains to the way we resolve the non-equilibrium nature of the unfolding process.
We recognize that the unfolding process may be interpreted in terms of the deformation of the sheet by slow modes and fast modes
(e.g. thermal undulations). There is a distinct separation of time scales and we take advantage of this by first solving the equilibrium
statistical mechanics of the folded sheet at a fixed unfolded angle. Subsequently, we model the non-equilibrium evolution of the
slow mode (e.g. changes in the folding angle) via the Langevin equation in the diffusion regime (i.e. overdamped limit) where the
previous, quasi-equilibrium results show up as a thermodynamic driving force.

In light of the context pertaining to small-scale origami discussed in the preceding paragraphs, in this paper, we:

• Create a minimal model of a folded (creased) sheet that characterizes the interplay of entropic repulsion, van der Waals
attraction, and nonlinear origami mechanics.

• Present a new approach for modeling repulsion of membranes at an angle with respect to each other and derive results for
fluctuating membranes with hinged boundary conditions.

• Examine the thermodynamic stability of small-scale origami at finite temperature both in closed-form and via numerical
examples.

1 With our focus on nanoscale, even micron-scale devices would be classified as ‘‘large-scale’’ in our terminology
2
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Fig. 1. Molecular origami macrostate and snapshot of a microstate. (a) Thermodynamic state variables of the molecular origami system of interest: length of the
sides of the top and bottom membranes, 𝓁𝑢 and 𝓁𝑣, angle of elevation of the top crease, 𝜃, distance between the top and bottom membranes at 𝜃 = 0, 𝑑0, and
membrane thickness, 𝑎. (b) Example microstate with thermal undulations in the top and bottom membranes, ℎ (𝑢, 𝑣) where ℎ is the displacement out of the plane
of the membrane.

• Provide insights into the multistability of the origami problem in relation to temperature, radii of curvature of the fold crease,
planar dimensions, geometry among others.

• Elucidate temporal stability of small-scale origami by exploiting transition state theory (TST) and a modified Kramers’ escape
rate approach. We remark that Kramers’ escape rate is specific to energy landscapes with interior local minima, and it cannot
account for minima at a boundary where the gradient of the energy is nonzero. In this work, we extend Kramers’ approach to
consider local minima at a boundary.

2. Statistical mechanics of folded membranes

We consider a flat molecular sheet folded in half about a single crease, as shown in Fig. 1a. We call the angle between the
top and bottom folded membranes the ‘‘crease angle’’, 𝜃; for example, 𝜃 = 0 when the two membranes are parallel and 𝜃 = 𝜋
when the sheet is flat. The crease angle is assumed to have negligible variance—except at timescales several orders of magnitude
larger than the timescale of atomic vibrations. As a result, the crease angle can be used to describe the equilibrium, macroscopic
state (i.e. ‘‘macrostate’’ in the thermodynamic sense) of the molecular origami. Assume for now that 𝜃 ≤ 𝜋∕2. The crease has a
finite radius such that, when 𝜃 = 0, there is a distance 𝑑0 between the two membranes. The two membranes have thickness 𝑎,
planar dimensions 𝓁𝑢 and 𝓁𝑣, and material points within the top and bottom are parametrized by (𝑢, 𝑣) ∈ 𝛺 ≅

[

0,𝓁𝑢
]

×
[

0,𝓁𝑣
]

and
(

𝑢′, 𝑣′
)

∈ 𝛺′ ≅
[

0,𝓁𝑢
]

×
[

0,𝓁𝑣
]

, respectively.
Molecules within the two membranes fluctuate about their mean positions at finite temperature—leading to deformations, or

undulations, of the top and bottom membranes. To characterize the deformed microstates of the sheets, we draw inspiration from
past work on the statistical mechanics of biological membranes and utilize the Monge gauge (Mozaffari et al., 2021; Hanlumyuang
et al., 2014; Kulkarni, 2023). The Monge gauge, ℎ ∶ 𝛺 ∪𝛺′ ↦ R, is a scalar displacement field where the displacement is assumed
orthogonal to the plane of the folded, but otherwise flat, top and bottom membrane.2

Although limiting our attention to deformations orthogonal to the undeformed sheet may seem overly restrictive, it represents
a good approximation for allowable deformations because (1) the molecular sheets of interest are effectively rigid to in-plane,
stretching deformations relative to bending and (2) because out-of-plane deformations are isometric when the deformations are
small enough (Chen and Santangelo, 2018; Zhou et al., 2023).

2.1. Energetics

Next we characterize the kinematics and associated energetics of a microstate of the folded molecular sheet. Let

𝑑 (𝑢, 𝑣) = 𝑑0 + 𝑢 tan 𝜃 + ℎ (𝑢, 𝑣) cos 𝜃, (1)

be the distance between (𝑢, 𝑣) and the bottom membrane, as measured orthogonal from the top membrane. Further, let the combined
spatial and thermodynamic average of the distance between the fluctuating membranes and the wall be 𝑑. By assumption, the
thermodynamic average of the undulations, ⟨ℎ⟩, vanishes so that

𝑑 = 𝑑0 +
𝓁𝑢
2

tan 𝜃. (2)

Then the energy of the folded molecular sheet consists of

2 Any undulations within the crease itself are not explicitly considered because (1) the crease is a curved section of membrane and, as a consequence, has
a higher apparent bending stiffness orthogonal to the line of the crease, and (2) the area of the crease is considered small relative to the rest of the folded
membrane such that the free energy contribution of its undulations are negligible.
3
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(1) the bending energy of the crease which is idealized as a linear torsional spring,

𝜃 =
𝜅𝜃𝓁𝑣
2

(

𝜃 − 𝜃0
)2 , (3)

where 𝜅𝜃 is the torsional stiffness per length of the crease.
(2) the van der Waals attraction between the membranes,

𝜎 ≈ −
𝐶𝑊 𝐴
12𝜋

(

1
𝑑2

− 2
(

𝑑 + 𝑎
)2

+ 1
(

𝑑 + 2𝑎
)2

)

, (4)

where 𝐴 = 𝓁𝑢𝓁𝑣 is the area of a folded membrane, and 𝐶𝑊 is the Hamaker constant, which characterizes the strength of
the (body-body) van der Waals interaction (𝐶𝑊 > 0 corresponds to an attractive interaction, 𝐶𝑊 corresponds to repulsive).
Eq. (4) is an adaptation of a well-known result for the van der Waals potential between two parallel membranes (Tadmor,
2001; Mozaffari et al., 2021) where 𝑑 is used in place of ‘‘distance’’ in order to account for the change in average distance
and screening of the potential that occur as a function of 𝜃.
And,

(3) the bending energy of the membranes due to undulations. Here, up to quadratic order, there are contributions from the mean
curvature, 𝑏 = 𝜅𝐻2∕2, and the Gaussian curvature, 𝐺 = 𝜅𝐺𝐾 (Helfrich, 1973) where 𝜅 is the bending modulus, 𝜅𝐺 is the
Gaussian modulus, 𝐻 is the mean curvature, and 𝐾 is the Gaussian curvature. In terms of the Monge representation, the
mean and Gaussian curvatures are

𝐻 = ∇ ⋅

⎛

⎜

⎜

⎜

⎝

∇ℎ
√

1 + |∇ℎ|2

⎞

⎟

⎟

⎟

⎠

≈ ∇2ℎ, (5a)

𝐾 =
det (∇∇ℎ)

(

1 + |∇ℎ|2
)2

≈ det (∇∇ℎ) , (5b)

where derivatives are taken with respect to surface membrane parameters, (𝑢, 𝑣), and the approximation is justified because,
physically, we expect |∇ℎ| ≪ 1.

hen the partition function, , is obtained by integrating over kinematically admissible deformations,

 = ∫ exp
(

−
[

ℎ̃
]

∕𝑘𝑇
)

ℎ̃, (6)

here 
[

ℎ̃
]

= 𝜃 +𝜎 +𝑏 +𝐺 is the energy of a microstate and the tilde is used to indicate that the out of plane membrane
eformations, ℎ̃, are generally subject to constraints. For the present case, the constraints include (1) the top and bottom membranes
hould not pass through each other–the ‘‘self-contact constraint’’–and (2) boundary conditions along the edge where the top and
ottom membranes meet the crease (i.e. 𝑢 = 0).

With the partition function in hand, the probability of a microstate is given by

𝜌 [ℎ] = 1


exp (− [ℎ] ∕𝑘𝑇 ) , (7)

and the Helmholtz free energy by

 = −𝑘𝑇 log. (8)

In its present form, (6) is prohibitively difficult to evaluate analytically. To make further progress, we take inspiration from
seminal work by Helfrich (1978) where it was shown that the problem of two parallel fluctuating membranes separated by a

ean distance 𝑑0 is equivalent to a single fluctuating membrane between two hard walls that are separated by a distance 2𝑑0
see Fig. 2a). Helfrich then simplified further by replacing the hard walls with a harmonic potential on the out of plane undulations
ith spring constant 𝜈 per unit area. The magnitude of 𝜈 was then chosen to (energetically) constrain the average undulations such

hat
⟨

ℎ2
⟩

< 𝑑20 ; where by ⟨.⟩, we mean the thermodynamic average so that
⟨

ℎ2
⟩

= ∫ ℎ2𝜌 [ℎ]ℎ = 1
 ∫ ℎ2 exp (− [ℎ] ∕𝑘𝑇 )ℎ. (9)

Here, as shown in Fig. 2b, we propose a similar mapping where two fluctuating membranes separated by a minimum distance 𝑑0
and with dihedral angle 𝜃 is mapped to a single fluctuating membrane between two hard walls each with minimum distance 𝑑0
from the membrane and with dihedral angles 𝜃. The hard walls are then subsequently modeled via a harmonic potential 𝜈

(

𝑑
)

that
serves to energetically impose the constraint

⟨

(ℎ cos 𝜃)2
⟩

< 𝑑2 where the factor cos 𝜃 appears because the out of plane displacement
field ℎ has a component of ±ℎ cos 𝜃 towards the top and bottom walls, respectively. The top and bottom folded membranes become
free to fluctuate as 𝜃 → 𝜋∕2, as expected. Note, although the distance between the two membranes varies with 𝑢, a mean-field
approximation is taken and it is assumed that the confining potential, 𝜈, is constant in space.3

3 Mean-field approximations are a common practice in statistical mechanics for achieving analytical tractability. Investigation of this argument via high fidelity
olecular dynamics, other molecular simulation techniques, or variational approximation along the lines of Ahmadpoor et al. (2017), presents a potentially
4
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Fig. 2. Modified Helfrich-like approach for two membranes at an angle with respect to each other. (a) Helfrich’s approach to model the entropic pressure between
two parallel membranes separated by a mean distance 𝑑0. This case is equivalent to a single fluctuating membrane between two hard walls that are separated
by a distance 2𝑑0. The hard wall constraints are weakly enforced by a harmonic potential—the strength of which depends on 𝑑0. (b) Extension of approach
to membranes at an angle, 𝜃. Mapping to a single fluctuating membrane at two hard walls, each at angle 𝜃, to the membrane. The hard wall constraints are
weakly enforced by a harmonic potential which depends on 𝑑 and where the force of the potential is projected orthogonal to the hard walls.

2.2. Freely fluctuating, parallel membranes revisited

As an illustration, we first revisit the problem of freely fluctuating, parallel membranes separated by a distance 𝑑. For this case,
the partition function is given by

𝑓 = ∫ exp
⎛

⎜

⎜

⎝

−
𝑏 [ℎ] +𝐺 [ℎ] + 1

2 𝜈𝑓 ∫ 𝓁𝑢
0 d𝑢 ∫ 𝓁𝑣

0 d𝑣 ℎ2

𝑘𝑇

⎞

⎟

⎟

⎠

ℎ (10)

where, for now, we have dropped the energy of the crease and the var der Waals potential, and where the subscript 𝑓 is used to
signify that this is the ‘‘free’’ case. To perform the functional integration over ℎ, it is convenient to choose a countable basis. Here we
choose to represent ℎ with a Fourier series because it diagonalizes the Laplacian operator and, consequently, leads to independent
Gaussian integrals over each of the Fourier coefficients. Next let

𝑞𝑚 = 2𝜋𝑚
𝓁𝑢

, 𝑝𝑛 =
2𝜋𝑛
𝓁𝑣

, (11)

where

(𝑚, 𝑛) ∈ M =
{

N × N ∶
√

𝑞2𝑚 + 𝑝2𝑛 ≤
2𝜋
𝑎

}

, (12)

and N is the set of natural numbers. Then

ℎ =
∑

(𝑚,𝑛)∈M

{

𝐴𝑚𝑛 cos
(

𝑞𝑚𝑢
)

cos
(

𝑝𝑛𝑣
)

+ 𝐵𝑚𝑛 cos
(

𝑞𝑚𝑢
)

sin
(

𝑝𝑛𝑣
)

+ 𝐶𝑚𝑛 sin
(

𝑞𝑚𝑢
)

sin
(

𝑝𝑛𝑣
)

+𝐷𝑚𝑛 sin
(

𝑞𝑚𝑢
)

cos
(

𝑝𝑛𝑣
)

}

,
(13)

and,

1
2
𝜈𝑓 ∫

𝓁𝑢

0
d𝑢∫

𝓁𝑣

0
d𝑣 ℎ2 =

∑

(𝑚,𝑛)∈M

{𝐴𝜈𝑓
8

(

𝐴2
𝑚𝑛 + 𝐵2

𝑚𝑛 + 𝐶2
𝑚𝑛 +𝐷2

𝑚𝑛
)

}

, (14a)

𝑏 =
∑

(𝑚,𝑛)∈M

{𝐴𝜅
8

(

𝑞2𝑚 + 𝑝2𝑛
) (

𝐴2
𝑚𝑛 + 𝐵2

𝑚𝑛 + 𝐶2
𝑚𝑛 +𝐷2

𝑚𝑛
)

}

, (14b)

𝐺 = 0. (14c)
5
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That the energy due to Gaussian curvature vanishes for periodic ℎ is a straightforward consequence of the Gauss–Bonnet theorem.
Substituting into (10),

𝑓 =
∏

(𝑚,𝑛)∈M

{

∫

∞

−∞
exp

(

−
𝐴
(

𝜈𝑓 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

𝐴2
𝑚𝑛

8𝑘𝑇

)

d𝐴𝑚𝑛

⋯∫

∞

−∞
exp

(

−
𝐴
(

𝜈𝑓 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

𝐷2
𝑚𝑛

8𝑘𝑇

)

d𝐷𝑚𝑛

} (15)

hich is a product of independent Gaussian integrals over each of the Fourier coefficients. This is easily evaluated as

𝑓 =
∏

(𝑚,𝑛)∈M

(

8𝜋𝑘𝑇
𝐴
(

𝜈𝑓 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

)2

, (16)

and, using (9), we have the result
⟨

ℎ2
⟩

𝑓 = 𝑘𝑇
8√𝜈𝑓𝜅

. (17)

ecall that the purpose of the harmonic potential ∫ 𝜈𝑓ℎ2∕2 is to energetically constrain the membranes from contacting each other.
o this end, we define the factor 𝜇 ∈ R such that 𝜇𝑑2 =

⟨

ℎ2
⟩

. Although 𝜇 is unknown in general, enforcing 𝜇 < 1 ensures that
ℎ2

⟩

< 𝑑2, as desired. Therefore, the harmonic potential constant is

𝜈𝑓 = 1
𝜅

(

𝑘𝑇
8𝜇𝑑2

)2
. (18)

The free energy of the system can now be obtained from (8)

𝑓 = −2𝑘𝑇
∑

(𝑚,𝑛)∈M
log 8𝜋𝑘𝑇

𝐴
(

𝜈𝑓 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

= 2𝑘𝑇
∑

(𝑚,𝑛)∈M
log

(

1
𝜅

(

𝑘𝑇
8𝜇𝑑2

)2
+ 𝜅

(

𝑞2𝑚 + 𝑝2𝑛
)

)

+0

= 𝐴
64𝜅𝜇

(𝑘𝑇
𝑑

)2
,

(19)

where, in the last step, the sum is approximated by an integral4 and we have dropped the constant term, 0, because only differences
in free energy are physically meaningful. The above implies an entropic pressure between the two membranes which scales as 1∕𝑑3;
this, along with results of (16)–(19), are well known (Helfrich, 1978) and are consistent with experimental observations of the
interactions between membranes (interactions which are otherwise difficult to explain). Lastly, Helfrich (1978) and Helfrich and
Servuss (1984) was able to approximate 𝜇 by averaging two limiting behaviors: (1) considering the constraint of −𝑑 < ℎ < 𝑑 on
nly a small number of points and (2) constraining each material point of the membranes while also allowing one specific mode of
eformation. The result is 𝜇 = 1∕6.

.3. Constrained membranes at an angle

Here we follow a similar approach while also considering the nuances associated with having the two membranes joined by a
rease and oriented at some angle with respect to each other, 𝜃 (such as in Fig. 2b). Let the (𝑢, 𝑣) parametrization be such that the

top membrane meets the crease at 𝑢 = 0. This implies ℎ (0, 𝑣) = 0. Also recall that the projection of the out of plane deformations of
the top membrane towards the bottom membrane is ℎ cos 𝜃. The partition function is therefore

 = exp
(

−
𝜃 +𝜎

𝑘𝑇

)

∫ exp
⎛

⎜

⎜

⎝

−
𝑏 [ℎ] +𝐺 [ℎ] + 1

2 𝜈 ∫
𝓁𝑢
0 d𝑢 ∫ 𝓁𝑣

0 d𝑣 (ℎ cos 𝜃)2

𝑘𝑇

⎞

⎟

⎟

⎠

𝛿 [ℎ (0, 𝑣)]ℎ, (20)

here 𝛿 [.] is the Dirac functional. Following Fredrickson (2006) and Grasinger et al. (2021) (and others), we represent the Dirac
unctional using its Fourier transform:

𝛿 [ℎ (0, 𝑣)] = ∫ exp

(

−𝑖∫

𝓁𝑣

0
d𝑣 𝜔 (𝑣)ℎ (0, 𝑣)

)

𝜔 (21)

where 𝜔 is a function which is the infinite dimensional analog of a wave vector. Here we choose to represent 𝜔 in the same basis
s ℎ such that

𝜔 (𝑣) =
∞
∑

𝑘=0
𝑊𝑘 cos

(

𝑝𝑛𝑣
)

+ 𝑉𝑘 sin
(

𝑝𝑛𝑣
)

, (22)

4 The integral is approximated by converting the wave vector to polar coordinates and extending the bounds of integration such that the radial distance is
6

ntegrated from 0 to ∞ and the azimuth angle from 0 to 2𝜋.
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ℎ (0, 𝑣) =
∑

(𝑚,𝑛)∈M

{

𝐴𝑚𝑛 cos
(

𝑝𝑛𝑣
)

+ 𝐵𝑚𝑛 sin
(

𝑝𝑛𝑣
)}

, (23)

and, consequently,

∫

𝓁𝑣

0
d𝑣 𝜔 (𝑣)ℎ (0, 𝑣) =

𝓁𝑣
2

∑

(𝑚,𝑛)∈M

{ ∞
∑

𝑘=0

(

𝛿𝑘𝑛𝐴𝑚𝑛𝑉𝑘 + 𝛿𝑘𝑛𝐵𝑚𝑛𝑊𝑘
)

}

=
𝓁𝑣
2

∑

(𝑚,𝑛)∈M

{

𝐴𝑚𝑛𝑉𝑛 + 𝐵𝑚𝑛𝑊𝑛
}

.
(24)

For brevity, let

𝐻𝑚𝑛 =
𝐴
8
(

𝜈 cos2 𝜃 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

. (25)

Then the partition function is

 = exp
(

−
𝜃 +𝜎

𝑘𝑇

)

∏

(𝑚,𝑛)∈M

{

∫

∞

−∞ ∫

∞

−∞
exp

(

−
𝐻𝑚𝑛𝐴2

𝑚𝑛
𝑘𝑇

− 𝑖
𝓁𝑣
2
𝑉𝑛𝐴𝑚𝑛

)

d𝐴𝑚𝑛d𝑉𝑛

× ∫

∞

−∞ ∫

∞

−∞
exp

(

−
𝐻𝑚𝑛𝐵2

𝑚𝑛
𝑘𝑇

− 𝑖
𝓁𝑣
2
𝑊𝑛𝐵𝑚𝑛

)

d𝐵𝑚𝑛d𝑊𝑛

× ∫

∞

−∞
exp

(

−
𝐻𝑚𝑛𝐶2

𝑚𝑛
𝑘𝑇

)

d𝐶𝑚𝑛 ∫

∞

−∞
exp

(

−
𝐻𝑚𝑛𝐷2

𝑚𝑛
𝑘𝑇

)

d𝐷𝑚𝑛

}

(26)

As a result of the constraint, the integrals over 𝐴𝑚𝑛 and 𝐵𝑚𝑛 take a different form but are still Gaussian. Here

∫

∞

−∞ ∫

∞

−∞
exp

(

−
𝐻𝑚𝑛𝐴2

𝑚𝑛
𝑘𝑇

− 𝑖
𝓁𝑣
2
𝑉𝑛𝐴𝑚𝑛

)

d𝐴𝑚𝑛d𝑉𝑛 =
√

𝜋𝑘𝑇
𝐻𝑚𝑛 ∫

∞

−∞
exp

(

−
(

𝓁𝑣
2

)2 𝑉 2
𝑛

(

4𝐻𝑚𝑛∕𝑘𝑇
)

)

d𝑉𝑛

=
√

𝜋𝑘𝑇
𝐻𝑚𝑛

√

√

√

√

4𝜋𝐻𝑚𝑛
(

𝓁𝑣∕2
)2 𝑘𝑇

= 4𝜋
𝓁𝑣

,

(27)

which, notably, is invariant with respect to 𝐻𝑚𝑛 and, as a consequence, 𝜃, 𝜈, 𝜅, and 𝑘𝑇 . This is likewise true for the integration
with respect to 𝐵𝑚𝑛. After taking the logarithm of , these factors would simply become additive constants to the free energy, so we
drop them here. Thus, the displacement constraint at the crease effectively removes the cos

(

𝑞𝑚𝑢
)

modes from the undulations of the top
and bottom membranes. This is intuitive upon inspection of the Fourier series representation of ℎ, (13), because, for the constraint
ℎ (0, 𝑣) to be satisfied for all 𝑣, is it is necessary that 𝐴𝑚𝑛 = 𝐵𝑚𝑛 = 0 for all (𝑚, 𝑛) ∈ M.

The partition function is finally evaluated as

 = exp
(

−
𝜃 +𝜎

𝑘𝑇

)

∏

(𝑚,𝑛)∈M

(

8𝜋𝑘𝑇
𝐴
(

𝜈 cos2 𝜃 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

)

, (28)

where we note that, in comparing with (16), (1) each term in the product has half the exponent as the free membranes case because
only half the modes contribute to the product, and (2) the 𝜈 factor in the denominator of each term now has the form 𝜈 cos2 𝜃
ecause the membranes are at the angle 𝜃 with respect to each other.

Using (9), we have the result
⟨

ℎ2 cos2 𝜃
⟩

= 𝑘𝑇 cos 𝜃
16

√

𝜈𝜅
. (29)

Analogous to the free case, let
⟨

ℎ2 cos2 𝜃
⟩

= 𝜇𝑑2 and

𝜈 = 1
𝜅

(

𝑘𝑇 cos 𝜃
16𝜇𝑑2

)2
. (30)

The free energy of the system can now be obtained from (8)

 = 𝜃 +𝜎 − 𝑘𝑇
∑

(𝑚,𝑛)∈M
log 8𝜋𝑘𝑇

𝐴
(

𝜈 cos2 𝜃 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

= 𝜃 +𝜎 + 𝑘𝑇
∑

(𝑚,𝑛)∈M
log

(

𝜈 cos2 𝜃 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

+0

= 𝜃 +𝜎 + 𝐴
256𝜅𝜇

(

𝑘𝑇 cos 𝜃
𝑑

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

,

(31)
7

ℎ
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where the contribution to the free energy due to undulations, ℎ, is denoted by ℎ and, again, the constant term 0 is dropped in
the last step. Given (31), some remarks are in order. Recall that for the freely fluctuating, parallel membrane case, the undulations
of the two membranes lead to an entropic pressure. Similarly, we see from (33) that the undulations cause an entropic torque about
the crease:

ℎ = −
𝜕ℎ
𝜕𝜃

=
𝐴 (𝑘𝑇 )2

(

𝓁𝑢
2 + 𝑑 sin 𝜃 cos 𝜃

)

128𝜅𝜇𝑑3
. (32)

As expected, we see that the entropic torque vanishes as 𝜃 → 𝜋∕2. This is because the undulations of the two membranes do not
interact with each other when the crease opens up. Similar to the entropic pressure of the freely fluctuating, parallel membranes,
the entropic torque of the folded membranes also scales as (𝑘𝑇 )2 ∕𝑑30𝜅𝜇. The first term in the parentheses of the numerator includes
a factor of 𝓁𝑢∕2, which can be understood as the entropic torque being like an entropic pressure (from half the undulation modes
of the free case) torquing the crease with a lever arm of 𝓁𝑢∕2. The second term (in the parentheses) is due to the dependence of
𝑑 on 𝜃. An equivalent result can be obtained by a different approach where the constraint at the crease is instead enforced via an
energy penalty. For completeness, this approach is outlined in Appendix.

Finally, before proceeding, we extend and refine (31) (which was derived by assuming that −𝜋∕2 ≤ 𝜃 ≤ 𝜋∕2) by recognizing that
(1) the entropic repulsion and van der Waals attraction should both vanish when 𝜃 > 𝜋∕2, and (2) hard contact will occur between
he top and bottom membrane for some 𝜃 ≤ 0. Therefore, we use the form

 =

⎧

⎪

⎨

⎪

⎩

𝜃 +𝜎 +ℎ, 𝜃𝑐 ≤ 𝜃 ≤ 𝜋
2

𝜃 ,
𝜋
2 < 𝜃 ≤ 𝜋.

(33)

which is both continuous and consistent with the aforementioned expectations. We determine 𝜃𝑐 by solving for 𝜃 when the edge of
the top membrane, 𝑢 = 𝓁𝑢, comes into contact, on average, with the bottom membrane:

0 = 𝑑0 − 𝓁𝑢 tan 𝜃𝑐 −
√

⟨

(ℎ cos 𝜃𝑐 )2
⟩

= 𝑑0 − 𝓁𝑢 tan 𝜃𝑐 −
√

𝜇
(

𝑑0 +
𝓁𝑢
2

tan 𝜃𝑐
)

,
(34)

hich results in

𝜃𝑐 = −arctan

(

2𝑑0
(

1 −
√

𝜇
)

𝓁𝑢
(

2 +
√

𝜇
)

)

. (35)

In the limit of vanishing membrane undulations, 𝜇 → 0, this recovers the angle at which zero temperature contact occurs:
𝜃𝑐 → −arctan

(

𝑑0∕𝓁𝑢
)

. Because the form of the free energy is different in each, we refer to
[

𝜃𝑐 , 𝜋∕2
]

as the folded interval, to 𝜃 > 𝜋∕2
as being ‘‘unfolded’’, and refer to 𝜃 = 𝜋 as ‘‘flat’’.

3. Folded stability

Equilibrium states of the system correspond with local extrema of the free energy. A state is stable if the free energy is locally
increasing, and its unstable if there are local perturbations of the system for which the free energy is decreasing. The primary
kinematic description of the folded membrane is 𝜃; thus, 𝜕∕𝜕𝜃 = 0 is a sufficient condition for a state to be in equilibrium. To this
end, we consider roots of

𝜕
𝜕𝜃

=

⎧

⎪

⎨

⎪

⎩

𝜅𝜃𝓁𝑣
(

𝜃 − 𝜃0
)

+ 𝐶𝑊 𝐴𝓁𝑢 sec2 𝜃
12𝜋

(

1
𝑑3

− 2
(𝑎+𝑑)3

+ 1
(2𝑎+𝑑)3

)

−
𝐴(𝑘𝑇 )2

(

𝓁𝑢
2 +𝑑 sin 𝜃 cos 𝜃

)

128𝜅𝜇𝑑3 𝜃𝑐 ≤ 𝜃 ≤ 𝜋
2 ,

𝜅𝜃𝓁𝑣
(

𝜃 − 𝜃0
) 𝜋

2 < 𝜃 ≤ 𝜋.
(36)

As in (32), each term in the above equation can be seen as (the negative of) a thermodynamic torque. The system is in equilibrium
when the net torque vanishes. We can make some general statements about each contribution to the torque. Using (32), we can
derive the change in entropic torque as a function of 𝜃,

𝜕ℎ
𝜕𝜃

=
𝐴 (𝑘𝑇 )2

(

4𝑑2 cos 2𝜃 − 𝓁𝑢
(

3𝓁𝑢 sec2 𝜃 + 4𝑑 tan 𝜃
))

512𝜅𝜇𝑑4
. (37)

The sign of this term is only a function of 𝓁𝑢, 𝑑0, and 𝜃. When 𝑑0 ≤ 𝓁𝑢
√

3∕2, this is nonpositive in the folded interval. Thus, the
ntropic torque is nonnegative, monotonically decreasing, and approaches 0 as 𝜃 ↗ 𝜋∕2. The torque due to the van der Waals
otential is nonpositive and also approaches 0 as 𝜃 ↗ 𝜋∕2. Finally, the torque due to the crease energy is linear in 𝜃; clearly, it is
onotonically decreasing and it is positive (negative) when 𝜃 < 𝜃0 (when 𝜃 > 𝜃0). Because of what is known about the signs of the

arious contributions to the thermodynamic torque, we can conclude that:

(1) when 𝐶𝑊 = 0, equilibrium states can only exist when 𝜃 ≥ 𝜃0. Further, the system has a single stable, equilibrium state when
𝜃0 ≥ 𝜋∕2.

2

8

(2) similarly, when (𝑘𝑇 ) ∕𝜅 = 0, equilibrium states can only exist when 𝜃 ≤ 𝜃0.
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Aspect ratio. Next we consider the role of the dimensions of the folded sheet on its stability. Let 𝜆 = 𝓁𝑣∕𝓁𝑢. Then

lim
𝜆→∞

 = 1
2
𝜅𝜃𝓁𝑣

(

𝜃 − 𝜃0
)2 (38)

uch that the origami system is monostable and its only minima is at 𝜃 = 𝜃0. An equivalent result is obtained when 𝜅𝜃 → ∞.
In contrast, consider 𝜆 → 0. For this case, when 𝜃 < 𝜋∕2, the crease energy is negligible compared to the van der Waals and

ntropic contributions. Then, an equilibrium state in the folded interval exists provided there is a state where the entropic torque
alances the torque due to the van der Waals attraction. While it is difficult to say with generality what the stability properties of
he system are in the folded interval, given the continuity of the torques and that they vanish as 𝜃 ↗ 𝜋∕2, we have that 𝜃 = 𝜋∕2
s an equilibrium state. It is stable (unstable) from below provided that there are an odd (even) number of equilibria on the folded
nterval. Consider now two separate cases for the crease energy. If 𝜃 < 𝜋∕2, then 𝜃 = 𝜋∕2 stable from above and so the system
s multistable provided there are two or more equilibrium states in the folded interval. If 𝜃0 > 𝜋∕2 and 𝜅𝜃 > 0, then 𝜃 = 𝜋∕2 is
nstable from above (and, by definition, unstable) and 𝜃 = 𝜃0 is stable. Then the system is multistable provided there are one or
ore equilibrium states in the folded interval. The number of equilibrium states in the folded interval will depend nontrivially on

he competition between entropic torque, which scales as (𝑘𝑇 )2 ∕𝜅, and the torque due to van der Waals attraction.

eparation of spatial scales. To make further progress, we consider the scaling: 𝑎 ≪ 𝑑0 ≪ min
{

𝓁𝑢,𝓁𝑣
}

. First, we expand 𝜕∕𝜕𝜃 in
owers of 𝑎∕𝑑:

𝜕
𝜕𝜃

= 𝓁𝑣𝜅𝜃
(

𝜃 − 𝜃0
)

−
𝐴 (𝑘𝑇 )2 sin 2𝜃
256 𝑑2𝜅𝜇

+
𝓁2
𝑢𝓁𝑣
𝑑3

⎛

⎜

⎜

⎜

⎝

𝐶𝑊

(

𝑎
𝑑

)2
sec2 𝜃

𝜋
−

(𝑘𝑇 )2

256 𝜅𝜇

⎞

⎟

⎟

⎟

⎠

+ 

(

(

𝑎
𝑑

)3
)

. (39)

ext, assume that 𝜃 is small enough such that terms 
(

(

min
{

𝓁𝑢,𝓁𝑣
}

∕𝑑
)3
)

dominate. Then, to a good approximation,

𝜕
𝜕𝜃

≈
𝓁2
𝑢𝓁𝑣
𝑑3

⎛

⎜

⎜

⎜

⎝

𝐶𝑊

(

𝑎
𝑑

)2
sec2 𝜃

𝜋
−

(𝑘𝑇 )2

256 𝜅𝜇

⎞

⎟

⎟

⎟

⎠

, (40)

and,

𝜃 = ±arccos

(

16
(

𝑎∕𝑑
)√

𝐶𝑊

𝑘𝑇
√

𝜋∕𝜅𝜇𝑑

)

⟹
𝜕
𝜕𝜃

≈ 0. (41)

The above equation, however, is still implicit and nonlinear. Expanding 𝑑 to linear order in 𝜃, we finally obtain:

𝜃± = ±arccos𝑅
1 − 𝓁𝑢𝑅

2𝑑0
√

1−𝑅2

(42)

s approximate equilibrium states, 𝜃− and 𝜃+, where

𝑅 =

(

𝑎∕𝑑0
)√

𝐶𝑊 ∕𝜋

𝑘𝑇 ∕
(

16
√

𝜅𝜇
)

(43)

is a measure of the ratio of the competition between the van der Waals attraction between the two membranes and entropic repulsion.
Based on the arguments to arccos and the square root, for these approximations to equilibrium states to be real, we require that

𝑘𝑇
16

√

𝜅𝜇
≥ 𝑎

𝑑0

√

𝐶𝑊
𝜋

; (44)

hat is, that the thermal undulations are not overcome by the van der Waals attraction. If (44) holds, then, upon inspection of (40),
e see that

⎧

⎪

⎨

⎪

⎩

𝜕
𝜕𝜃 ⪅ 0, if |𝜃| ≲ 𝜃+

𝜕
𝜕𝜃 ⪆ 0, if |𝜃| ≳ 𝜃+

(45)

and, consequently, 𝜃± are local minima. The symmetry of the above analysis about 𝜃 = 0 is a direct consequence of the asymptotic
limit of 𝑑0 ≪ 𝓁𝑢, because here the states 𝜃 and −𝜃 are simply mirror images of each other. As 𝑅 → 1, a consequence is that 𝜃± → 0,
which is reminiscent of a pitchfork bifurcation. Another important consequence of this asymptotic limit is that 𝜃𝑐 ∼ 0 and only 𝜃+
is accessible. This leads to a system which is at least bistable with local minima at 𝜃 = 𝜃+ and 𝜃0, and local maxima at 𝜃 = 0 and in
the interval 𝜃 ∈

(

𝜃+, 𝜃0
)

.

Strong van der waals attraction. Here we investigate the possibility of equilibria near to, but also less than, 𝜃 = 𝜋∕2. An approximation
to 𝜕∕𝜕𝜃|𝜃 = 0 can be obtained by Taylor expanding about 𝜃 = 𝜋∕2 up to 

(

(𝜋∕2 − 𝜃)3
)

, and then solving the resulting cubic
equation:

− 𝓁𝑣𝜅𝜃
(

𝜃0 −
𝜋 )

+ 𝓁𝑣𝜅𝜃
(𝜋 − 𝜃

)

+ 1 𝓁𝑣
(

512
(

𝑎
)2

𝐶𝑊 −
(𝑘𝑇 )2

)

(𝜋 − 𝜃
)3

= 0. (46)
9
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Let

𝑝 = −
16𝓁𝑢𝜅𝜃

512
𝜋

(

𝑎
𝓁𝑢

)2
𝐶𝑊 − (𝑘𝑇 )2

𝜅𝜇

, (47)

𝑞 = −
16𝓁𝑢𝜅𝜃

(

𝜃0 −
𝜋
2

)

512
𝜋

(

𝑎
𝓁𝑢

)2
𝐶𝑊 − (𝑘𝑇 )2

𝜅𝜇

, (48)

𝛥 =
𝑞2

4
−

𝑝3

27
, (49)

then, provided 𝛥 ≥ 0, the real root of (46) is

𝜋
2
− 𝜃∗ =

(
√

𝛥 −
𝑞
2

)1∕3
−
(
√

𝛥 +
𝑞
2

)1∕3
, (50)

where 𝜃∗ is the equilibrium state corresponding to the root. Given (46)–(50), we note the following:

(1) A necessary condition for the equilibrium state to be in the folded interval (i.e. 𝜃∗ ∈
[

𝜃𝑐 , 𝜋∕2
]

) is that 𝑞 ≤ 0. Assuming
𝜃0 ≥ 𝜋∕2, this implies

512
𝜋

(

𝑎
𝓁𝑢

)2
𝐶𝑊 ≥ (𝑘𝑇 )2

𝜅𝜇
. (51)

Here, in contrast to the condition for equilibria near 𝜃 = 0 (i.e. (44)), the van der Waals attraction, by some measure, must
be sufficiently larger than the entropic repulsion. If instead 𝜃∗ > 𝜋∕2, this would be inconsistent with the assumptions of (46)
because the van der Waals and entropic terms would necessarily vanish.

(2) The condition given by (51) is also sufficient for the root being real.
(3) Any of the following limits:

𝓁𝑢𝜅𝜃 → 0,
(

𝑎
𝓁𝑢

)2
𝐶𝑊 → ∞, 𝜃0 →

𝜋
2
, (52)

implies that

𝜃∗ →
𝜋
2
. (53)

(4) The nature of the van der Waals and entropic terms suggests the following: when
(

𝑎
𝓁𝑢

)2
𝐶𝑊 → ∞, 𝜃 → 𝜃𝑐 is a minima and

𝜃∗ → 𝜋∕2 is a maxima.

Summary and hot limit. For either the case of (1) 𝑎 ≪ 𝑑0 ≪ min
{

𝓁𝑢,𝓁𝑣
}

and 𝑅 ≲ 1, or (2)
(

𝑎∕𝓁𝑢
)2 𝐶𝑊 → ∞, the system is

thermodynamically multistable provided that 𝜃0 > 𝜋∕2. However, it is clear (by (36)) the system will be monostable in the high
temperature limit, i.e. (𝑘𝑇 )2 ∕𝜅𝜇 → ∞. Here the stable state is 𝜃 = 𝜃0 when 𝜃0 > 𝜋∕2 and saturates at 𝜃 → 𝜋∕2 otherwise.

3.1. Graphene with semi-cylindrical creases formed by elastic bending

A particular form of the crease torsional stiffness is of interest because of its simplicity. Consider forming the crease by bending
via a uniform, semi-cylindrical curvature for 𝜋 radians with a final radius of 𝑑0∕2. If done elastically, in terms of the bending stiffness,
𝜅, we have that5

𝜅𝜃 = 2𝜅
𝜋𝑑0

, and 𝜃0 = 𝜋. (54)

ow we consider how the free energy landscape changes as a function of the geometry, mechanical properties, and temperature of
he molecular origami.

As a model system, we consider graphene with mechanical properties 𝜅 = 0.95 eV and 𝐶𝑊 = 100 eV (Yang et al., 2021). The
thickness of the graphene is assumed to be 𝑎 = 3.5 Å, and, following (Yang et al., 2021), it is assumed that the crease has diameter,
0 = 7 Å. At zero temperature, the smallest square where the folded state has less energy than the flat state has a side length of
pproximately 70 Å (Yang et al., 2021). Here we probe the multistability of the system near this limiting case; therefore let 𝓁𝑣 = 70

Åand 𝓁𝑢 = 24 Å.6 Following Mozaffari et al. (2021), let 𝜇 = 1∕6. At room temperature, 𝑘𝑇 = 0.025 eV. In order to isolate the effect
of each parameter, we vary it about this base system. The results are presented in Figs. 3–5 where, for each figure, the base case is
depicted by a solid purple line.

First, we consider the effects of 𝓁𝑢 and 𝑑0. In Fig. 3a, 𝓁𝑢 is varied as 6 Å, 12 Å, 24 Å, 48 Å, and 96 Å, and the free energy as
a function of 𝜃 is shown in the folded interval,

[

𝜃𝑐 , 𝜋∕2
]

. The free energy curves are identical for 𝜋∕2 < 𝜃 ≤ 𝜋 because the crease

5 The relationship between 𝜅𝜃 and 𝜅 is determined by integrating the energy of mean curvature over the area of the crease, and equating it with (3).
6 The square is folded in half and some of the length is in the crease itself, 𝓁 ∕2 − 𝜋𝑑 ∕2 ≈ 24 Å.
10
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Fig. 3. Free energy landscapes for varying geometry. (a) Free energy as a function of 𝜃 for varying 𝓁𝑢. As 𝓁𝑢 increases, the depth of the folded minima and the
magnitude of the free energy barrier increase. When 𝓁𝑢 drops below a critical length, the folded minima is annihilated via a saddle node bifurcation. (b) Free
energy as a function of 𝜃 for varying 𝑑0. As 𝑑0 increases, the depth of the folded minima and the magnitude of the free energy barrier decrease. When 𝑑0
approaches a critical distance, the folded minima is annihilated via a saddle node bifurcation.

Fig. 4. Free energy landscapes for varying temperature and membrane thickness. (a) Free energy as a function of 𝜃 for varying 𝑘𝑇 . Increasing temperature leads to
increasing entropic repulsion between the two membranes until the folded minima vanishes. (b) Free energy as a function of 𝜃 for varying 𝑎; that is, varying
umber of stacked layers. Increasing 𝑎 simultaneously increases van der Waals attraction between the membranes and bending stiffness. The competition between
he van der Waals attraction and crease energy moves the energy barrier up and to the left until the folded minima vanishes.

roperties are the same; recall, there is a local minima at the flat state, 𝜃 = 𝜋. As 𝓁𝑢 is increased, the free energy barrier between
the folded minima and the flat state increases in magnitude and moves towards 𝜃 = 0. Note that (1) the case of 𝓁𝑢 = 24 Å, at finite
temperature, though still stable, is at a higher free energy than the flat state, (2) the difference in free energy between the minima
increases for 𝓁𝑢 = 12 Å, and (3) the case of 𝓁𝑢 = 6 Å is monostable; that is, the folded minima no longer exists as it has been
annihilated via a saddle node bifurcation.

Next consider folding the crease with varying radii of curvature. In Fig. 3b, 𝑑0 is varied as 1.75 Å, 3.5 Å, 7 Å, 14 Å, and 28
. As 𝑑0 changes, there are various competing effects on the free energy landscape: the strength of the van der Waals attraction

for a given 𝜃) decreases, as does the entropic repulsion and effective crease stiffness, 𝜅𝜃 (via Eq. (54)). The combined effect is that
he depth of the well for the folded minima decreases with increasing 𝑑0, and the free energy barrier moves towards 𝜃 = 0. For
ncreasing 𝑑0, eventually the folded minima is annihilated via a saddle node bifurcation (similar to decreasing 𝓁𝑢).

Next, in Fig. 4a, 𝑘𝑇 is varied as 0.025 eV, 2.5 eV, 5 eV, and 10 eV. As the temperature increases, the crease angles at which the
inima and the energy barrier occur decrease until the minima is no longer accessible (at 𝑘𝑇 = 10) due to self-contact, and the
agnitude of the energy barrier increases. The boundary of the accessible region is delimited by a solid, vertical line. Eventually,

hermal fluctuations overcome the van der Waals attraction. This, however, only occurs at extreme temperatures because 𝜅 and 𝐶𝑊
re both several orders of magnitude greater than 𝑘𝑇 at room temperature.

Multiple layers of a 2D material may be stacked to increase its thickness. Assume that if the thickness is rescaled by 𝑎 → 𝜁𝑎
hen the bending stiffness is rescaled as 𝜅 → 𝜁3𝜅. Stacking layers serves to increase the van der Waals attraction, and the increased
ending stiffness makes the crease more stiff while simultaneously reducing the entropic repulsion. In Fig. 4b, the thickness, 𝑎, is
aried from 1.75 Å, 3.5 Å, 7 Å, and 14 Å. As the thickness increases, the energy barrier moves up and to the left until the system is
11
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Fig. 5. Free energy landscapes as a function of van der Waals coefficient and steric repulsion factor. (a) Free energy as a function of 𝜃 for varying 𝐶𝑊 . As 𝐶𝑊
iverges, the energy barrier saturates at 𝜃 = 𝜋∕2. (b) Free energy as a function of 𝜃 for varying 𝜇. For the system of interest, the free energy is insensitive to 𝜇.

onostable. Here, in contrast to increasing temperature, the folded minima vanishes, not because of entropic repulsion, but because
he crease energy dominates the van der Waals attraction.

Although the degree of tunability may be limited, we imagine altering the van der Waals attraction by functionalizing the surface
f the graphene, or by other chemical alterations. Here, in Fig. 5a, the van der Waals coefficient, 𝐶𝑊 is varied from 101 eV, 102
V, 103 eV, and 2.5 × 103 eV. The results here agree well with the previous analysis which suggested that making the van der
aals attraction sufficiently large causes the energy barrier to converge towards 𝜃 → 𝜋∕2 in the limiting case. In contrast, as 𝐶𝑊 is

ecreased, the energy barrier increases in magnitude and occurs at lesser 𝜃 until the system is monostable (e.g. 𝐶𝑊 ⪅ 101 eV).
Lastly, in Fig. 5b, we probe the sensitivity of the steric repulsion factor, 𝜇. We see that, except for the case of vanishingly small

𝜇, the energy landscapes are nearly identical. Thus, at least for the model system considered herein, it is easy to justify 𝜇 = 1∕6 as
a reasonable choice.

4. Thermally driven unfolding

In the previous section, we investigated the thermodynamic equilibrium multistability properties of a molecular origami system
consisting of a single crease. Although a folded stable state existed for many of the systems, the depth of the well varied and, in fact,
was at a greater free energy than the flat state for the base system at any finite temperature. Thus, although a folded state was stable,
the flat state was energetically preferred; and the free energy barrier between them also varied, with a nontrivial dependence on the
properties of the system. Here we ask a different question: ‘‘what is the long-time, nonequilibrium behavior of the system?’’. More
specifically, ‘‘when does the system prefer the flat state to any folded state?’’, and ‘‘assuming the system is initially in the folded
state, at what rate will it unfold?’’. The latter question may be difficult to answer with a high degree of accuracy; however, tools
originally developed for studying chemical reaction rates and derived from nonequilibrium statistical mechanics such as transition
state theory (TST) and Kramers’ escape rate theory (Hänggi et al., 1990; Vanden-Eijnden and Tal, 2005; Balakrishnan, 2008; Bao
and Truhlar, 2017), will be used here to provide estimates.

To study the long-time, nonequilibrium behavior of the molecular origami system, we envision the following: the origami is
surrounded by a fluid at a fixed temperature. Thermal fluctuations of the surrounding fluid lead to collisions with the origami and
act as a kind of stochastic torque on the crease, 𝜂 (𝑡). The stochastic torque will generally cause changes to the crease angle, 𝜃 (𝑡);
however, we assume the time scale at which 𝜃 varies is much larger than the time scale of undulations of the top and bottom

embranes. Thus, we assume a kind of quasiequilibrium process where, for a given change in crease angle, the undulations of the
embranes thermalize (effectively) instantaneously, and the free energy given by (33) is a proper description of the state of the

rigami system.7 The dynamics of the system can be described by the Langevin equation as

𝐼𝜃̈ − 𝐼𝛾𝜃̇ = − 𝜕
𝜕𝜃

+ 𝜂, (55)

where □̇ = 𝜕□∕𝜕𝑡, 𝐼 is the moment of inertia of the top membrane (about the center of the crease), 𝛾 is the drag coefficient, and
−𝜕∕𝜕𝜃 acts as a thermodynamic torque.

Clearly, the Langevin equation given in (55) is nonlinear and does not readily admit a solution. However, it provides a formalism
or estimating the rate of transition over an energy barrier for the case of when 𝛾𝑡 ≫ 1, i.e. the diffusion regime. Towards

consideration of this regime, we drop the inertial term in (55) and arrive at the Smoluchowski equation (Balakrishnan, 2008;

7 Recall that the free energy here is specific to the constant fold angle ensemble. We emphasize that this free energy does not correspond to a crease
12
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Fig. 6. Example free energy landscapes for studying rate of state transitions. 𝜃(1)𝑓 and 𝜃(2)𝑓 are the folded minima for the first and second example free energy
andscapes, respectively. Note that, in contrast to 𝜃(1)𝑓 , 𝜃(2)𝑓 is not a minima because the thermodynamic torque, −𝜕∕𝜕𝜃, vanishes, but instead because the
hermodynamic torque pins the crease at the boundary, 𝜃𝑐 . 𝜃∗ is the location of the free energy barrier and 𝜃𝑢 is some crease angle just beyond the barrier. The

transition rate is related to the current density at 𝜃𝑢 relative to the probability mass about 𝜃𝑓 .

Leadbetter et al., 2023; Hänggi et al., 1990). Let 𝜌 (𝜃, 𝑡) denote the probability density of a crease angle 𝜃 at time 𝑡. The corresponding
Fokker–Planck equation (of the Smoluchowski equation) is

𝜕𝜌
𝜕𝑡

= 1
𝐼𝛾

𝜕
𝜕𝜃

( 𝜕
𝜕𝜃

𝜌
)

+ 𝑘𝑇
𝐼𝛾

𝜕2𝜌
𝜕𝜃2

. (56)

Next, let 𝑗 (𝜃, 𝑡) denote the current density in the diffusion regime. By continuity,
𝜕𝜌
𝜕𝑡

+
𝜕𝑗
𝜕𝜃

= 0, (57)

which gives us a means to obtain the current density explicitly.
Let 𝜃𝑢 denote some crease angle just beyond the free energy barrier, 𝜃∗, and 𝜃𝑓 denote the crease angle of the folded minima.

Examples are shown in Fig. 6. Next we imagine an ensemble of molecular origami structures that are initialized about 𝜃𝑓 with
energies that are less than  (𝜃∗) − 𝑘𝑇 . The molecular origamis thermalize before unfolding and escaping to 𝜃 → 𝜋 where they are
subsequently removed from the ensemble (Balakrishnan, 2008; Hänggi et al., 1990) Assume there exists a nontrivial equilibrium
probability density, 𝜌eq, and corresponding stationary current, 𝑗st . The transition rate from folded to flat can be related to the
stationary current by

𝐾 =
𝑗st

∫ (

𝜃𝑓
) d𝜃 𝜌eq (𝜃)

, (58)

hat is, the ratio of the flux at 𝜃𝑢 to the probability mass around 𝜃𝑓 , where 
(

𝜃𝑓
)

is a neighborhood about 𝜃𝑓 . Recalling (56) and
57), and integrating, we obtain Balakrishnan (2008)

𝑗st = 𝑘𝑇
𝐼𝛾

(

𝜌eq
(

𝜃𝑓
)

exp
(


(

𝜃𝑓
)

𝑘𝑇

)

− 𝜌eq
(

𝜃𝑢
)

exp
(

(𝜃𝑢)
𝑘𝑇

)

)

∫ 𝜃∗
𝜃𝑓

d𝜃 exp
(

(𝜃)
𝑘𝑇

) . (59)

t is assumed that 𝜌eq
(

𝜃𝑢
)

is vanishingly small, and so this term is dropped. The denominator in Eq. (59) is approximated using
aplace’s method, resulting in:

𝑗st ≈
𝜌eq

(

𝜃𝑓
)

𝐼𝛾

√

𝑘𝑇 |′′ (𝜃∗)|
2𝜋

exp
(

−𝛥
𝑘𝑇

)

, (60)

here ′ = 𝜕∕𝜕𝜃, ′′ = 𝜕2∕𝜕𝜃2, etc., and 𝛥 =  (𝜃∗) −
(

𝜃𝑓
)

.
We pause here to consider the forms of (58) and (60). Even if not much is known about the energy landscape beyond 𝛥, it is

still evident that an Arrhenius type relationship should hold for the unfolding rate. One of the simplest approximations that can be
made regarding the transition rate of an energy barrier ‘‘hopping’’ process is given by

𝐾TST = 𝑘𝑇
ℎ

exp
(

−𝛥
𝑘𝑇

)

, (61)

where ℎ is Planck’s constant and 𝑘𝑇 ∕ℎ provides a temperature dependent (inverse) time scale. Eq. (61) is a particular variant of
transition state theory. There are many modifications and generalizations of transition state theory that are more or less well-suited
for various cases. See Hänggi et al. (1990), Vanden-Eijnden and Tal (2005) and Bao and Truhlar (2017) for example.
13
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While the simplicity of (61) is attractive, further refinements can be made, due to the seminal work of Kramers (1940), by
eturning to (60) and including more information regarding the energy landscape. By assumption, the system has thermalized in
he energy well near the folded minima, 𝜃𝑓 . Then it is well known that, within this well, 𝜌eq (𝜃) = 𝐶 exp (− (𝜃) ∕𝑘𝑇 ) where 𝐶 is a
ormalization constant. The normalization constant is difficult to evaluate; so instead, recognize that

𝜌eq (𝜃) = 𝜌eq
(

𝜃𝑓
)

exp

(


(

𝜃𝑓
)

− (𝜃)
𝑘𝑇

)

, (62)

and,

∫ (

𝜃𝑓
)

d𝜃 𝜌eq (𝜃) = 𝜌eq
(

𝜃𝑓
)

exp

(


(

𝜃𝑓
)

𝑘𝑇

)

∫ (

𝜃𝑓
)

d𝜃 exp
(

−
 (𝜃)
𝑘𝑇

)

. (63)

Now consider three separate cases8: (1) when the folded minima, 𝜃𝑓 , is in the interior of the interval
[

𝜃𝑐 , 𝜋∕2
]

(e.g. 𝜃(1)𝑓 in Fig. 6),
2) when 𝜃𝑓 = 𝜃𝑐 and ′ (𝜃𝑐 ) = 0, and (3) when 𝜃𝑓 = 𝜃𝑐 and ′ (𝜃𝑐 ) > 0 (e.g. 𝜃(2)𝑓 in Fig. 6).

For the interior case, we once again utilize Laplace’s method so that

∫ (

𝜃𝑓
)

d𝜃 𝜌eq (𝜃) ≈ 𝜌eq
(

𝜃𝑓
)

√

2𝜋𝑘𝑇
′′

(

𝜃𝑓
) , (64)

𝐾 ≈

√

′′
(

𝜃𝑓
)

|′′ (𝜃∗)|

2𝜋𝐼𝛾
exp

(

−𝛥
𝑘𝑇

)

(65)

For the boundary cases, we need to adjust the standard Kramers approach. When 𝜃𝑓 = 𝜃𝑐 and ′ (𝜃𝑐 ) = 0, we can again use Laplace’s
ethod but only extend the upper bound of integration to infinity. In this case, the probability mass takes the same form but with
factor of 1∕2 such that

∫ (

𝜃𝑓
)

d𝜃 𝜌eq (𝜃) ≈ 1
2
𝜌eq

(

𝜃𝑓
)

√

2𝜋𝑘𝑇
′′

(

𝜃𝑓
) , (66)

𝐾 ≈

√

′′
(

𝜃𝑓
)

|′′ (𝜃∗)|

𝜋𝐼𝛾
exp

(

−𝛥
𝑘𝑇

)

(67)

Last, consider the case when 𝜃𝑓 = 𝜃𝑐 and ′ (𝜃𝑐 ) > 0. Laplace’s method is not applicable here, in general, as there is no guarantee
hat ′′ (𝜃𝑓

)

> 0. We instead use the Taylor expansion  (𝜃) = 
(

𝜃𝑓
)

+′ (𝜃𝑓
) (

𝜃 − 𝜃𝑓
)

and obtain

∫

𝜃′

𝜃𝑓
d𝜃 𝜌eq (𝜃) ≈ 𝜌eq

(

𝜃𝑓
) 𝑘𝑇
′

(

𝜃𝑓
) , (68)

𝐾 ≈
′ (𝜃𝑓

)

𝐼𝛾

√

|′′ (𝜃∗)|
2𝜋𝑘𝑇

exp
(

−𝛥
𝑘𝑇

)

, (69)

where 𝜃𝑐 < 𝜃′ ≤ 𝜃∗ and exp
(

−
(

𝜃′
)

∕𝑘𝑇
)

is dropped because it is assumed to be negligible. Note that ′ (𝜃𝑓
)

> 0, as desired, if
𝜃𝑓 = 𝜃𝑐 is a local minima. It can be seen in Figs. 3–5 that the free energy is – to a good approximation – linear in the neighborhood
of the boundary minima for the systems considered therein. Finally, the modified Kramers’ rate is given by

𝐾Kr =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

√

′′(𝜃𝑓
)

|′′(𝜃∗)|
2𝜋𝐼𝛾 exp

(

− 𝛥
𝑘𝑇

)

, 𝜃𝑓 ∈ (𝜃𝑐 , 𝜋∕2]
√

′′(𝜃𝑓
)

|′′(𝜃∗)|
𝜋𝐼𝛾 exp

(

− 𝛥
𝑘𝑇

)

, 𝜃𝑓 = 𝜃𝑐 and ′ (𝜃) = 0

′(𝜃𝑓
)

𝐼𝛾

√

|′′(𝜃∗)|
2𝜋𝑘𝑇 exp

(

− 𝛥
𝑘𝑇

)

, otherwise.

(70)

With approximations for the transition rate from folded to flat in hand, we return to the graphene system considered in
ection 3.1. Recall that, for the base case, 𝓁𝑢 = 24 Å, 𝓁𝑣 = 70 Å, 𝑑0 = 7 Å, 𝑎 = 3.5 Å, 𝜅 = 0.95 eV, 𝐶𝑊 = 100 eV, and 𝜇 = 1∕6. Further,
e assume the areal density is 𝜎 = 0.763 mg∕m2. Then the moment of inertia (of the top membrane) about the center line of the

rease is

𝐼 = 𝜎𝐴

(

𝓁2
𝑢
3

+ 𝓁𝑢𝑑0 + 𝑑20

)

. (71)

In Figs. 7–9, we consider the interplay of temperature and geometry on the transition rates from flat to folded, i.e. we approximate
the temporal stability of the folded energy well. Fig. 7 shows the transition rate properties of the system as a function of 𝑘𝑇 and 𝑑0:
(a) heat map of the transition rate approximated via a Kramers-like formula (70), 𝐾Kr𝛾, (b) the rate approximated via the simplest

8 An additional assumption in all of three cases is that ′ (𝜃) = 0 ⟹ ′′ (𝜃) ≠ 0. This assumption is often made implicitly when employing Laplace’s method
14

in statistical mechanics.
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Fig. 7. Interplay of temperature and crease diameter on the long-time, nonequilibrium behavior. (a) The transition rate approximated via a Kramers-like formula,
𝐾Kr𝛾, (b) the rate approximated via transition state theory, 𝐾TST, (c) the well depth, 𝛥, and (d) the maximum of the two rate approximations, focused on the
boundary of temporal stability.

form of transition state theory (61), 𝐾TST, (c) the well depth, 𝛥, and (d) the maximum of the two rate approximations (assuming
𝛾 as unity), max

{

𝐾Kr𝐾TST
}

, restricted to parameter space where the most significant changes in transition rates are occurring.
To be precise, let 𝜃𝑓 and 𝜃∗ be the crease angles with the minimum and maximum free energies on the interval

[

𝜃𝑐 , 𝜋∕2
]

,
respectively. Then, we let

𝛥 =

⎧

⎪

⎨

⎪

⎩

 (𝜃∗) −
(

𝜃𝑓
)

, 𝜃𝑓 < 𝜃∗


(

𝜃𝑓
)

− (𝜃∗) , otherwise
(72)

such that 𝛥 can be negative. The origami is multistable provided 𝛥 > 0. Note that, although the molecular origami is multistable
when 𝑑0 ⪅ 18 Å, the rate of unfolding becomes nonnegligible at smaller diameters, e.g. in the range of 12 Å< 𝑑0 < 18 Å, depending
on the temperature. Here the role of temperature is two-fold: (1) it increases the entropic repulsion between the two membranes
which can alter the energy barrier, 𝛥, and (2) the transition rate, for a fixed 𝛥, increases exponentially with temperature.

Fig. 8 shows the transition rate properties as a function of 𝑘𝑇 and 𝑎. As before, we assume that changes in thickness correspond
with changes in bending stiffness such that 𝑎 → 𝜁𝑎 ⟹ 𝜅 → 𝜁3𝜅. Here, in contrast to varying 𝑑0, one sees that generally systems
which are multistable, i.e. 𝛥 > 0, are also temporally stable. There is only a narrow region, on the order of fractions of Å, over
which there is a distinction between equilibrium and temporal stability. Increasing the thickness of the graphene increases the
van der Waals attraction, while simultaneously making the crease more stiff and reducing entropic torque. Recall Fig. 4b. As the
thickness increases, the energy barrier moves up and to the left until the system is monostable; as this bifurcation occurs, the well
depth is nonnegligible until 𝜃∗ → 𝜃𝑐 , which occurs over a small range, 10.6 Å⪅ 𝑎 ⪅ 11.1 Å.

Lastly, Fig. 9 shows the transition rate properties as a function of 𝑘𝑇 and 𝓁𝑢. As before, we see that the transition rate becomes
nonnegligible prior to loss of equilibrium multistability, with a clear dependence on temperature. Although the origami is multistable
provided 𝓁𝑢 ⪆ 6 Å, the transition rate begins to increase around 9 Åfor higher temperatures (i.e. 0.05 eV) and 7 Åfor lower
temperatures (0.015 eV).

5. Closure

We address arguably the simplest possible problem that may be defined for a nanoscale origami structure—a folded elastic
sheet with a crease. This deceptively ‘‘simple’’ problem displays a rich interplay between several interesting elements such as the
entropic repulsive force, the non-equilibrium nature of the unfolding process and mechanics. Using physically motivated simplifying
15
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Fig. 8. Interplay of temperature and membrane thickness on the long-time, nonequilibrium behavior. (a) The transition rate approximated via a Kramers-like formula,
𝐾Kr𝛾, (b) the rate approximated via transition state theory, 𝐾TST, (c) the well depth, 𝛥, and (d) the maximum of the two rate approximations, focused on the
boundary of temporal stability.

assumptions we are able to make enough progress to understand the key factors that dictate the stability of a nanoscale origami
structure under thermal fluctuations.

Future work can proceed several directions e.g. structures with multiple creases or multiple vertices. With connection to
electromechanical coupling, applications for energy harvesting may be envisioned (Liu and Sharma, 2013; Deng et al., 2014). The
applications at the intersection of biophysics and biomedicine seem to be plentiful e.g. active matter (Kulkarni, 2023), DNA origami,
among others.
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⟨

s

Fig. 9. Interplay of temperature and membrane length, 𝓁𝑢, on the long-time, nonequilibrium behavior. (a) The transition rate approximated via a Kramers-like formula,
𝐾Kr𝛾, (b) the rate approximated via transition state theory, 𝐾TST, (c) the well depth, 𝛥, and (d) the maximum of the two rate approximations, focused on the
boundary of temporal stability.

Appendix. Alternative approach to constraint at the crease

Here the constraint ℎ (0, 𝑣) = 0 is enforced via an energetic penalty.9 The partition function is

 = exp
(

−
𝜃 +𝜎

𝑘𝑇

)

∫ exp
⎛

⎜

⎜

⎝

−
𝑏 [ℎ] +𝐺 [ℎ] + 1

2 𝜈 ∫
𝓁𝑢
0 d𝑢 ∫ 𝓁𝑣

0 d𝑣 (ℎ cos 𝜃)2 + 1
2 𝛾 ∫

𝓁𝑣
0 d𝑣 ℎ2 (0, 𝑣)

𝑘𝑇

⎞

⎟

⎟

⎠

(A.1)

where 𝛾 is the magnitude of the penalty. We will be interested in the limit of 𝛾 → ∞. The partition function is evaluated as

 = exp
(

−
𝜃 +𝜎

𝑘𝑇

)

∏

(𝑚,𝑛)∈M

(

8𝜋𝑘𝑇
𝐴
(

𝜈 cos2 𝜃 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
))

) ⎛

⎜

⎜

⎜

⎝

8𝜋𝑘𝑇

𝐴
(

2𝛾
𝓁𝑢

+ 𝜈 cos2 𝜃 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
)

)

⎞

⎟

⎟

⎟

⎠

, (A.2)

Using (9), we have the result
⟨

ℎ2 cos2 𝜃
⟩

= 𝑘𝑇 cos 𝜃
16

√

𝜈𝜅
+ 𝑘𝑇 cos2 𝜃

16
√

(

𝜈 cos2 𝜃 + 2𝛾
𝓁𝑢

)

𝜅
. (A.3)

Note that, in the limit of 𝛾 → ∞, this recovers the analogous result, (29), where the constraint was enforced exactly. Again, let
ℎ2 cos2 𝜃

⟩

= 𝜇𝑑2. Then, in the limit of 𝛾 → ∞,

𝜈 = 1
𝜅

(

𝑘𝑇 cos 𝜃
16𝜇𝑑2

)2
. (A.4)

9 For a discussion of some of the nuances related to enforcing constraints exactly versus penalizing deviations from constraints via an energy penalty,
17

ee Weiner (2012).
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The free energy of the system can be obtained from (8)

 = 𝜃 +𝜎 − 𝑘𝑇
∑

(𝑚,𝑛)∈M
log 8𝜋𝑘𝑇

𝐴
(

𝜈 cos2 𝜃 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
)) − 𝑘𝑇

∑

(𝑚,𝑛)∈M
log 8𝜋𝑘𝑇

𝐴
(

2𝛾
𝓁𝑢

+ 𝜈 cos2 𝜃 + 𝜅
(

𝑞2𝑚 + 𝑝2𝑛
)

)

= 𝜃 +𝜎 + 𝐴
256𝜅𝜇

(

𝑘𝑇 cos 𝜃
𝑑

)2
+ 𝐴𝑘𝑇

√

2𝛾
𝓁𝑢𝜅

+
(

𝑘𝑇 cos2 𝜃
256𝜅𝜇𝑑2

)2

= 𝜃 +𝜎 + 𝐴
256𝜅𝜇

(

𝑘𝑇 cos 𝜃
𝑑

)2
+ 𝐴𝑘𝑇

√

𝛾

(

1
8
√

2𝓁𝑢𝜅
+

√

𝓁𝑢∕𝜅3𝜖

8192
√

2
+ 

(

𝜖2
)

)

,

(A.5)

where

𝜖 =
(

𝑘𝑇 cos2 𝜃
256𝜅𝜇𝑑2

)2
∕𝛾. (A.6)

Consider the last term of (A.5). We drop the first of the three terms in the parentheses as it represents a contribution to the free
energy which is energetically inaccessible in the limit of 𝛾 → ∞. The last two terms vanish in the limit of 𝛾 → ∞. What remains is
equivalent to the free energy obtained by enforcing the constraints exactly, (33).
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