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A B S T R A C T

Extensive experiments over the decades unequivocally point to a pronounced scale-dependency
of plastic deformation in metals. This observation is fairly general, and broadly speaking,
strengthening against deformation is observed with the decrease in the size of a relevant
geometrical feature of the material, e.g., the thickness of a thin film. The classical theory
of plasticity is size-independent, and this has spurred extensive research into an appropriate
continuum theory to elucidate the observed size effects. This pursuit has led to the emergence
of strain gradient plasticity, along with its numerous variants, as the paradigm of choice.
Recognizing the constrained shear of a thin metallic film as the model problem to understand
the observed size-effect, all conventional (and reasonable candidate) theories of strain gradient
plasticity predict a scaling of yield strength that inversely varies with the film thickness ∼ ℎ−1.
Experimental findings indicate a considerably diminished scaling, the magnitude of which can
exhibit significant variation based on processing conditions or even the mode of deformation.
As an example, the scaling exponent as low as −0.2 has been observed for as-deposited copper
thin films. Two perspectives have been posited to explain this perplexing anomaly. Kuroda and
Needleman (2019) argue that the conventional boundary conditions used in strain gradient
plasticity theory are not meaningful for the canonical constrained thin film problem and
propose a physically motivated alternative. Dahlberg and Ortiz (2019) contend that the intrinsic
differential calculus structure of all strain gradient plasticity theories will invariably lead to the
incorrect (or rather inadequate) explanation of the size-scaling. They propose a fractional strain
gradient plasticity framework where the fractional derivative order is a material property that
correlates with the scaling exponent. In this work, we present an alternative approach that
complements the existing explanations. We create a statistical mechanics model for interacting
microscopic units that deform and yield with the rules of classical plasticity, and plastic yielding
is treated as a phase transition. We coarse-grain the model to precisely elucidate the microscopic
interactions that can lead to the emergent size-effects observed experimentally. Specifically, we
find that depending on the nature of the long-range microscopic interactions, the emergent
coarse-grained theory can be of fractional differential type or alternatively a form of integral
nonlocal model. Our theory, therefore, provides a partial (and microscopic) justification for
the fractional derivative model and makes clear the precise microscopic interactions that must
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be operative for a continuum plasticity theory to be a valid phenomenological descriptor for
capturing the correct size-scale dependency.

1. Introduction

The so-called size-effect in plasticity pertains to the augmentation of strength observed in a material undergoing inelastic
eformation as a particular dimension or measure of its size diminishes. The central issue can be embodied by the following simple
ne-dimensional relation: 𝜎𝑦 = 𝜎𝑜[1+ (𝑙∕ℎ)𝛼] (Dahlberg and Ortiz, 2019). Here ℎ is the relevant geometrical feature size, 𝑙 and 𝛼 are
aterial properties that govern the scaling, while 𝜎𝑦 is the observed yield stress. Stipulating that deformation of a thin metallic film

s an excellent paradigmatical problem from both a theoretical and experimental viewpoint; in that context, ℎ may be identified
ith the film thickness. The classical theory of plasticity (Hill, 1998) is size-independent, and 𝑙 is identically zero. Since the 1980s,

here has been sustained and extensive effort to refine the theory of continuum plasticity in order to elucidate the size-effect, and
his endeavor remains ongoing to the present day. In parallel, a wealth of experimental evidence has established the richness of
caling of plastic deformation in varied contexts e.g. twisting of wires (Fleck and Hutchinson, 2001; Dunstan et al., 2009; Liu
t al., 2013), flexure in thin foils (Fleck and Hutchinson, 2001), micropillars in compression (Korte and Clegg, 2011), indentation
ardness testing (Bushby and Dunstan, 2004) among many others cf. Xiang and Vlassak (2006), Fredriksson and Gudmundson
2005), Alizadeh et al. (2004). A general overview of size effects in micron-scale plasticity is provided in Greer and De Hosson
2011).

The conceptual foundation for enhancing the plasticity theory to encompass size-effects was derived from the concept of
eometrically necessary dislocations and their correlation with nonhomogeneous deformation (Nye, 1953; Ashby, 1970; Gao and
uang, 2003). This led to the development of strain gradient plasticity theory and its numerous variations that currently abound

n the literature (Mühlhaus and Alfantis, 1991; Fleck and Hutchinson, 2001; Gurtin and Anand, 2009; Fleck et al., 2015; Evans and
utchinson, 2009; Idiart and Fleck, 2009a; Idiart et al., 2009; Niordson and Hutchinson, 2011; Dahlberg and Faleskog, 2013; Al-
ub and Voyiadjis, 2006; Evans and Hutchinson, 2009; Dahlberg and Ortiz, 2019; Kuroda and Needleman, 2019; Fleck et al., 1994;
utchinson and Fleck, 1997). The prevailing strain gradient plasticity paradigm purports to modify the energy cost of deformation
y adding strain gradient contributions, the strength of which is dictated by additional phenomenological material properties. This
s in contrast to classical plasticity, which only contains energetic contributions from strain. The strain gradient plasticity theory as
sed currently (Mühlhaus and Alfantis, 1991; Fleck and Hutchinson, 2001; Han et al., 2005; Fleck et al., 2015; Gurtin and Anand,
009; Gudmundson, 2004; Fleck and Willis, 2009a,b; Idiart and Fleck, 2009a; Niordson and Legarth, 2010; Dahlberg and Faleskog,
013, 2014) are higher-order differential equations1 and the additional material properties introduce a characteristic length scale
hat dictates the scaling (for instance, 𝑙 in the equation of the topical paragraph).

The literature on the development and use of strain gradient plasticity theory is quite extensive, and we do not intend to provide
comprehensive review of the literature since that will unnecessarily distract from our central theme.2 The key point to emphasize

s that the exponent 𝛼 in 𝜎𝑦 = 𝜎𝑜[1+ (𝑙∕ℎ)𝛼] is predicted to be one. Unfortunately, while strain gradient plasticity theories do predict
a size-effect, the scaling is incorrect. Numerous experiments have shown that the exponent 𝛼 can vary widely; for the very specific
case of Copper, from 0.2 to 1 depending on the processing condition3 and deformation mode (Mu et al., 2014, 2016). The strong
inverse size-dependency predicted by conventional strain gradient plasticity theories, as highlighted by Dahlberg and Ortiz (2019),
is a consequence of the differential calculus structure of the governing equations. Perhaps due to that, the various extensions have
been somewhat inadequate (at best) to redress this discrepancy. In summary, classical plasticity predicts no size-effect while strain
gradient plasticity predicts an overtly strong size-effect and one that is rather restrictive and unable to capture the rich variation of
scaling observed in experiments.4

We highlight two recent attempts to reconcile the discrepancy between the scaling predicted by current theories. The first is
due to Dahlberg and Ortiz (2019), who contend that regardless of the flavor of the strain gradient plasticity theory being used,
the inherent differential structure will lead to the inverse size-scaling with little latitude to capture the wide variation observed in
experiments. They propose a fractional strain gradient plasticity theory5 where the order of the differential operator is no longer
constrained to be an integer (as in conventional ordinary differential calculus). This derivative order, which can be a fraction, has

1 The commonly strain gradient plasticity theories are fourth-order partial differential equations in terms of the displacement field in contrast to second order
or classical plasticity.

2 See Hutchinson and Fleck (1997), Voyiadjis and Song (2019), Evans and Hutchinson (2009), Gudmundson (2004), Fleck et al. (2015), Han et al. (2005)
or review on strain gradient plasticity.

3 For example, in the case of constrained shear, the exponent was 0.2 for as-deposited state and 0.7 for the annealed state.
4 See the discussion in Dahlberg and Ortiz (2019) regarding modifications made by several authors (Evans and Hutchinson, 2009; Idiart et al., 2009; Idiart

nd Fleck, 2009b; Niordson and Hutchinson, 2011; Dahlberg and Faleskog, 2013; Al-Rub and Voyiadjis, 2006; Dahlberg and Boåsen, 2019).
5 There is increased recent interest in the broader physical sciences community to use fractional calculus to capture myriad non-classical features in physical

henomena such as in diffusion, viscoelasticity, material hereditaries, among others (Oates et al., 2021; Mashayekhi et al., 2018, 2019; Patnaik et al., 2020a,b;
ollkamp and Semperlotti, 2020; Ding et al., 2021; Li et al., 2019; Li and Ostoja-Starzewski, 2009; Deseri et al., 2016; Bologna et al., 2020; Ostoja-Starzewski,
009, 2013; Lazopoulos, 2006).
2
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the status of a material parameter and correlates with the scaling exponent 𝛼. With appropriate fitting, Dahlberg and Ortiz are able
o match the experimentally observed weak size scaling.

Kuroda and Needleman take a very different approach (Kuroda and Needleman, 2019). Focusing primarily on the constrained
hear problem of a thin metallic layer, they contend that there is nothing wrong with the conventional strain gradient plasticity
heory but hypothesize that the failure is due to the assumed boundary condition of zero plastic strain at the interfaces of the
hin film and the adjoining rigid materials. They propose to use a different boundary condition—prior to the initiation of plastic
training at the boundaries during a simple shear, the magnitude of plastic strain gradient at the layer boundary is constrained to
e below a maximum threshold. The observed size scaling using this approach, with appropriate fitting, was able to match with the
xperimental results in Mu et al. (2014, 2016).

Further in-depth research is required to explore the connection of Kuroda and Needleman’s interesting and illuminating
pproach (Kuroda and Needleman, 2019) to our work. The approach by Dahlberg and Ortiz is quite effective, but leaves open the
uestion of the determination of the fractional derivative order and is used (at the moment) as a fitting parameter.6 This gives rise
o the following questions: is there any microscopic way to justify fractional strain gradient plasticity or, further, actually determine
he fractional derivative?

In this work, we propose a statistical mechanics model that, when coarse-grained, leads to an effective emergent theory of
ontinuum plasticity. We purport to show that depending on the precise assumptions made at the microscale, classical plasticity or
train gradient plasticity theories emerge, but most interestingly, we are also able to justify a fractional strain gradient plasticity
ramework with a clear interpretation of the fractional derivative order. We remark that extensive work has been undertaken on
tatistical mechanics of dislocations (Berdichevsky, 2023; Soutyrine and Berdichevsky, 2018; Yefimov et al., 2004; El-Azab, 2000;
efimov and Van der Giessen, 2005; Limkumnerd and Van der Giessen, 2008; Dimiduk et al., 2006; Sethna et al., 2017) and
djacent topics that are mathematically connected if not physically (Ahmadpoor et al., 2017; Zhu et al., 2022; Ahmadpoor et al.,
022; Grasinger et al., 2021; Grasinger and Sharma, 2024; Liu and Sharma, 2013).7 However, barring some simple results, the
pproach is rather difficult, with few analytical results at hand and certainly no clear pathway to justify a macroscopic theory that
an explain the correct scaling observed experimentally. We, therefore, take an alternative approach, and our microscopic model
osits that the material consists of several small regions (subunits) that reach different states of inelastic deformation obeying the
ules of equilibrium statistical mechanics and classical plasticity.8 As with any statistical mechanics problems, we then characterize

the energetic cost of deformation at the microscale (which includes the law of interaction between the subunits) and then perform
suitable coarse-graining to find an effective free energy that governs the emergent or macroscale deformation behavior. The proposal
to identify the microscale with smaller units of material that deform as per classical plasticity rather than contend with dislocations
enormously simplifies the otherwise analytically intractable problem and permits us to obtain a wealth of insights.

The outline of the paper is as follows: in Section 2, we present an overview of the basic model premise and explain the kinematics
and energetics at the microscale. Using the tools of equilibrium statistical mechanics, we obtain the macroscopic (coarse-grained)
free energy of the body in Section 3. The microscale subunits can interact in different ways. As a first approximation, we assume
that the interaction is negligible, and the analytical evaluation of such a model is presented in Section 4. In Section 5, we derive the
details of the model when interactions9 are incorporated and elucidate the underpinnings of the size-effect. Aside from concluding
in Section 6, we highlight several details in the appendices.

2. Central premise and energetics of uniform states

The central premise of the model is depicted in Fig. 1. We consider a plastically deforming body10 under homogeneous applied
stress 𝜎̄. The body is divided into smaller elasto-plastic micro-regions, where each micro-region is equivalent to a single element in
the lattice. Elastic and plastic strain in every single element is assumed to be fluctuating and homogeneous within the element. The
microscopic energy of each element is composed of linear elastic energy and activation energy for plastic strain modeled using an
energy barrier. We treat the body as an ensemble of all the elements in the statistical mechanics framework. Without the loss of
generality and detracting from the central goal of our paper, we adopt a minimum model of plasticity (ideal plasticity). A remedy to
introduce strain-hardening and strain-softening responses using microscopic mechanisms is discussed in Appendix C. Each sub-unit
can interact with others through some interaction law. Physically, this situation is similar to interacting dislocations 11 or closer
to our schematic model, the interaction of two inclusions with an inelastic eigenstrain.12 The interaction among the elements is
assumed to be pairwise, isotropic, and repulsive, but a detailed discussion regarding its subtleties is deferred to Section 5.2.

6 This is not a criticism. All phenomenological theories use fitting parameters, as do we in the current work. Our emphasis in this manuscript is on microscopic
nd physical justification.

7 See an interesting application and examples of statistical mechanics in the context of grain boundaries (Chen and Kulkarni, 2015, 2013, 2017).
8 Indeed, the highlight of our work is that even though at the microscale, deformation is assumed to obey classical size-independent plasticity, fractional

train gradient plasticity can emerge as an effective macroscopic descriptor.
9 The many-body interactions play a critical role in many scientific fields of interest, such as elasticity (Eringen, 1972; Kröner, 1967), polymer

etworks (Khandagale et al., 2023), dielectric polymers (Khandagale et al., 2024), ionic solids (Marshall and Dayal, 2014), quantum theory (Yukawa, 1950;
ruus and Flensberg, 2004), and more (Jha et al., 2023; Abkevich et al., 1995; Di Paola and Zingales, 2008; French et al., 2010; Campa et al., 2009).
10 See Rohrer et al. (2023) for the evolvement of the microstructure of polycrystalline metals through the mechanism of grain boundary migration.
11 Recall that two isolated dislocations in an infinite elastic medium interact as ln 𝑟.
12 The situation of two regions in a body undergoing slightly different inelastic deformation is very close to the interaction of two Eshelby-type inclusions.

2
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ecall that two inclusions with an inelastic eigenstrain exhibit an asymptotic interaction of 1∕𝑟 .
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Fig. 1. Schematic of interactions among microscopic plastic regions in a sample undergoing plastic shear deformation between two rigid plates.

We first consider the microscopic kinematics and energetics of a single element in the body. As illustrated in Fig. 1, consider a
representative element in 𝑑-dimensional space, say, [0, 𝜉𝑐 ]𝑑 with 𝜉𝑐 > 0 being the relevant lengthscale. For simplicity, we employ
geometrically linear kinematics in the sense that the total shear strain of the element is the sum of elastic strain and plastic strain:

𝜖 = 𝜖𝑒 + 𝜖𝑝.

Under the application of shear stress 𝜎̄, we propose that the total energy (or Hamiltonian) of an element as a function of
elastic–plastic strains (𝜖𝑒, 𝜖𝑝) can be written as

𝐻̂(𝜖𝑒, 𝜖𝑝; 𝜎̄) = 𝐻̂0(𝜖𝑒, 𝜖𝑝; 𝜎̄) + 𝐻̂dsp(𝜖𝑝),

𝐻̂0(𝜖𝑒, 𝜖𝑝; 𝜎̄) = 𝑣𝑐 [
1
2
𝐺(𝜖𝑒)2 − 𝜎̄𝜖], 𝐻̂dsp(𝜖𝑝) = 𝛾(𝜖𝑝)𝜉𝑐 ,

(2.1)

where 𝐺 > 0 is the shear modulus, 𝑣𝑐 = (𝜉𝑐 )𝑑 is the volume of the element, and 𝛾(𝜖𝑝) > 0 is the activation force of plastic strain.
Physically, we recognize 𝐻̂0(𝜖𝑒, 𝜖𝑝; 𝜎̄) as the sum of the elastic energy ( 1

2𝐺(𝜖𝑒)2) and potential energy (−𝜎̄𝜖) associated with applied
stress 𝜎̄, and 𝐻̂dsp(𝜖𝑝) as the energy dissipation associated with plastic strain.

The admissible plastic strain is a priori assumed to be discrete with quanta of plastic strain:

𝜖𝑝 = 𝑘𝜖𝑝∗ (𝑘 ∈ Z). (2.2)

With inspiration from the dislocation theory of crystalline solids, we can relate a quantum of plastic strain with the magnitude of
Burgers vector 𝑏: 𝜖𝑝∗ ∼ 𝑏2

𝜉2𝑐
. Here, we aim to develop a generic statistical model for plasticity originating from microscopic mechanisms.

Therefore, we will not specify the value of quanta of plastic strain 𝜖𝑝∗, though 𝑏2

𝜉2𝑐
is a reasonable order-of-magnitude estimate.

Based on symmetry and stability, we require that the activation force (or activation energy per unit length) 𝛾 = 𝛾(𝜖𝑝) satisfies
the following conditions:

(i) 𝛾(0) = 0 and 𝛾(𝜖𝑝) > 0 if 𝜖𝑝 ≠ 0;
(ii) 𝛾(−𝜖𝑝) = 𝛾(𝜖𝑝).
Again, inspired by dislocation theory, the activation force 𝛾(𝜖𝑝∗) for one quantum of plastic strain could be identified as the

Peierls-Nabarro type energy barrier. Below, we list a few possible choices of activation energy for plastic strains.

1. For a minimum model, we postulate that (𝜖𝑝 = 𝜖𝑝

𝜖𝑝∗
)

𝛾(𝜖𝑝) = 𝛾0𝑄( 𝜖
𝑝

𝜖𝑝∗
), 𝑄(𝑥) = |𝑥| + 𝑐1|𝑥|

2, (2.3)

where 𝛾0 ≥ 0 and 𝑐1 ∈ R are some empirical coefficients.
2. More generally, we may assume that

𝛾(𝜖𝑝) = 𝛾0𝐴(
𝜖𝑝
𝑝 ), 𝐴(𝑥) = |𝑥| +

∞
∑

𝑐𝑛|𝑥|
𝑛+1 = |𝑥| + 𝑐1|𝑥|

2 +⋯ . (2.4)
4

𝜖∗ 𝑛=1
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Fig. 2. Total energy of a single element (𝐻̂ ; shown in solid line) plotted for different strain (𝜖) values. Different parabolas correspond to different 𝑘 ∈ Z.

3. To accommodate various physical origins of plastic strains at different stages of deformation, we may assume a piecewise
linear activation energy of form:

𝛾(𝜖𝑝) = 𝛾0𝑆(
𝜖𝑝

𝜖𝑝∗
), 𝑆(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 if 0 < 𝑥 ≤ 𝜖𝑝1∕𝜖
𝑝
∗ ,

𝑐1(𝑥 − 𝜖𝑝1∕𝜖
𝑝
∗) + 𝜖𝑝1∕𝜖

𝑝
∗ if 𝜖𝑝1∕𝜖

𝑝
∗ < 𝑥 ≤ 𝜖𝑝2∕𝜖

𝑝
∗ ,

⋮ ⋮

(2.5)

Presumably, various forms of activation energy (2.3)–(2.5) can be used to model plastic behaviors from different mechanisms,
including movements of dislocations, nucleations of new dislocations, nucleations of voids and interstitial sites, etc. Subsequently,
we choose a particular form of activation energy at the phenomenological level without attempting to associate an activation energy
form with a particular mechanism. Under the application of the external stress 𝜎̄ and neglecting the influence of thermal fluctuations,
we claim the equilibrium state of the element is governed by the minimization problem:

min{𝐻̂(𝜖𝑒, 𝜖𝑝; 𝜎̄) ∶ 𝜖 ∈ R, 𝜖𝑝 ∈ 𝜖𝑝∗Z}. (2.6)

Suppose that the activation energy 𝛾 = 𝛾(𝜖𝑝) is given by (2.3) with 𝑐1 ≡ 0. The solid line in Fig. 2 shows the total energy 𝐻̂ plotted
for different total strain 𝜖 = 𝜖𝑒 + 𝜖𝑝, where each parabola corresponds to different 𝑘 ∈ Z. Following (2.6), the first order necessary
condition for the minimum energy, 𝜕𝐻̂

𝜕𝜖 = 0 gives us the applied stress (𝜎̄) in terms of strain (𝜖) as a discontinuous, piecewise linear
function given by

𝜎̄ =

⎧

⎪

⎨

⎪

⎩

𝐺𝜖 if 0 < 𝜖 < 𝜎𝑌
𝐺 + 1

2 𝜖
𝑝
∗

𝐺(𝜖 − 𝑘𝜖𝑝∗) if 𝜎𝑌
𝐺 + 2𝑘−1

2 𝜖𝑝∗ < 𝜖 < 𝜎𝑌
𝐺 + 2𝑘+1

2 𝜖𝑝∗ 𝑘 = 1, 2, 3,… ,
(2.7)

which is illustrated in Fig. 3. The stress

𝜎𝑌 =
𝛾0𝜉𝑐
𝑣𝑐𝜖

𝑝
∗

(2.8)

may be identified as the critical stress for driving the dislocation over the energy barrier or the yield stress at the absence of (thermal
or structural) fluctuations.

3. Free energy of a lattice model

In this section, we present the treatment of statistical mechanics to obtain the coarse-grained free energy of the plastically
deforming body. Consider a macroscopic sample of size 𝐿 in R𝑑 . Upon subdividing the sample into 𝑁 = (𝐿∕𝜉𝑐 )𝑑 elements, we are
interested in finding the macroscopic properties of the sample by the principles of statistical physics. For each of the elements,
the states (or DOFs) of each element are described by two variables, i.e., the elastic and plastic strains (𝜖𝑒𝑖 , 𝜖

𝑝
𝑖 ), with the discrete

admissible spaces identified as

𝑒 𝑝 𝑒 𝑝 𝑝 (3.1)
5

S = S × S , S ∶= 𝜖0Z, S ∶= 𝜖∗Z.
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Fig. 3. Microscopic elasto-plastic behavior of a single element.

Here, 𝜖0 (0 < 𝜖0 ≪ 𝜖𝑝∗) is a positive constant for counting elastic-strain whose precise value is of no physical consequence, and S is
the collection of single-site states for a representative element. The configurational space for microstates of the entire sample with
𝑁 elements is given by

𝛺 = S𝑁 . (3.2)

In other words, a microstate of the system 𝑠 ∈ 𝛺 contains 𝑁 pairs of (𝜖𝑒𝑖 , 𝜖
𝑝
𝑖 ) ∈ S with 𝑖 being the label for each element. Suppose

that the probability that the system is found at the 𝑠-microstate is given by 𝑝(𝑠). Then, the averages or expectations of elastic and
plastic strain at the 𝑖th site can be written as

(𝜖𝑒𝑖 , 𝜖
𝑝
𝑖 ) = (⟨𝜖𝑒𝑖 (𝑠)⟩, ⟨𝜖

𝑝
𝑖 (𝑠)⟩) = (

∑

𝑠∈𝛺
𝜖𝑒𝑖 (𝑠)𝑝(𝑠),

∑

𝑠∈𝛺
𝜖𝑝𝑖 (𝑠)𝑝(𝑠)),

and the macroscopic elastic and plastic strain are defined as the averages:

(𝜖𝑒, 𝜖𝑝) = 1
𝑁

𝑁
∑

𝑖=1
(⟨𝜖𝑒𝑖 (𝑠)⟩, ⟨𝜖

𝑝
𝑖 (𝑠)⟩). (3.3)

From discussions in Section 2, the Hamiltonian for the system is postulated as

𝐻(𝑠; 𝜎̄) = 𝐻0(𝑠; 𝜎̄) +𝐻 int (𝑠),

𝐻0(𝑠; 𝜎̄) =
𝑁
∑

𝑖=1
𝐻̂(𝜖𝑒𝑖 , 𝜖

𝑝
𝑖 ; 𝜎̄) =

𝑁
∑

𝑖=1

{

𝑣𝑐 [
1
2
𝐺(𝜖𝑒𝑖 )

2 − 𝜎̄𝜖𝑖] + 𝛾(𝜖𝑝𝑖 )𝜉𝑐
}

,
(3.4)

where 𝜎̄ is the applied external shear stress, and 𝐻 int (𝑠) represents the interaction energy between elements whose precise form will
be specified later.

To pass from the microscopic model described by the Hamiltonian (3.4) to a macroscopic coarse-grained model, we will employ
the approach of statistical physics. In classical thermal physics, the critical concept of (absolute) temperature reflects the collective
energy states and fluctuations within the system, whereas entropy measures the number of accessible microstates of the system. In
thermal equilibrium, the probability distribution over all admissible microstates of the system is dictated by the Second Law, which
can then be used to determine all macroscopic properties (or thermodynamic relations) of the system. To apply this approach to a
plastically deformed body, we postulate the following.

1. The stochasticity or fluctuations are macroscopically homogeneous within the system (an elastoplastic body) and can still be
characterized by a single positive parameter called temperature 𝑇 . As a microscopic statistical model, the temperature here
characterizes stochasticity contributed by thermal agitations and other sources, including but not limited to structural defects
and pre-existing heterogeneities in the materials. Therefore, 𝑇 should be understood as some kind of empirical parameter
instead of the actual thermal temperature that originates from the vibration of atoms.13 The physically relevant parameter
is the energy scale 𝑘𝐵𝑇 (𝑘𝐵 is the Boltzmann constant). Similar ideas have been used in the literature for studying glassy
polymers, granular mechanics, and amorphous materials.

13 Although we interpret temperature 𝑇 here as an empirical parameter, we have scaled the lengthscale of unit plastic microregion (𝜉𝑐 ) such that the value
of temperature 𝑇 in our analysis stays in the physical range of absolute temperature for the material under investigation.
6
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2. In quasi-static processes of deformation by applied stress 𝜎̄, the sample may exchange energy with the environment and stay
in instantaneous equilibrium at a constant temperature 𝑇 , and hence follows the Maxwell–Boltzmann distribution.

Based on these postulates, we consider a canonical ensemble of the system at a constant temperature 𝑇 and claim that
he probability distribution 𝑝(𝑠) over all admissible microstates of the system is given by the Maxwell–Boltzmann distribution:
𝛽 = 1∕𝑘𝐵𝑇 )

𝑝(𝑠) = 𝑒−𝛽𝐻(𝑠;𝜎̄)

𝑍
(∀ 𝑠 ∈ 𝛺), (3.5)

here

𝑍(𝛽,𝑁, 𝜎̄) =
∑

𝑠∈𝛺
𝑒−𝛽𝐻(𝑠;𝜎̄) =

∑

𝑠∈𝛺
𝑒−𝛽𝐻

int (𝑠)𝑒
−𝛽

∑𝑁
𝑖=1

{

𝑣𝑐 [
1
2𝐺(𝜖𝑒𝑖 )

2−𝜎̄𝜖𝑖]+𝛾(𝜖
𝑝
𝑖 )𝜉𝑐

}

(3.6)

s the partition function. Moreover, the free energy of the system is given by

𝐹 (𝛽,𝑁, 𝜎̄) = −𝑘𝐵𝑇 log𝑍(𝛽,𝑁, 𝜎̄). (3.7)

irect differentiation implies the familiar thermodynamic relations:

−
𝜕𝐹 (𝛽,𝑁, 𝜎̄)

𝜕𝜎̄
=

∑

𝑠∈𝛺

[ 𝑒−𝛽𝐻(𝑠;𝜎̄)

𝑍
𝑣𝑐

𝑁
∑

𝑖=1
𝜖𝑖(𝑠)

]

= 𝑉
𝑁

𝑁
∑

𝑖=1
⟨𝜖𝑖⟩ = 𝑉 𝜖. (3.8)

aking another derivative of the above equation, we obtain

𝑉
𝐺eff

∶= − 𝜕2𝐹
𝜕𝜎̄2

= 𝛽
∑

𝑠∈𝛺

{ 𝑒−𝛽𝐻(𝑠;𝜎̄)

𝑍
[

𝑣𝑐
𝑁
∑

𝑖=1
𝜖𝑖(𝑠)

]2
}

− 𝛽
∑

𝑠∈𝛺

{ 𝑒−𝛽𝐻(𝑠;𝜎̄)

𝑍
𝑣𝑐

𝑁
∑

𝑖=1
𝜖𝑖(𝑠)

}2

=
𝛽𝑉 2

𝑁2

𝑁
∑

𝑖=1
[⟨𝜖2𝑖 ⟩ − ⟨𝜖𝑖⟩

2] ≥ 0,

(3.9)

where the quantity 𝐺eff = 𝐺eff (𝛽,𝑁, 𝜎̄) is in general different from the shear modulus 𝐺 in the Hamiltonian (3.4), depends on
the temperature 𝛽, size 𝑁 and external shear stress 𝜎̄, and could be identified as the macroscopic shear modulus measured in a
laboratory. In addition, the entropy is given by the Gibbs-Shannon’s formula:

𝑆 = −𝑘𝐵
∑

𝑠∈𝛺
𝑝(𝑠) log 𝑝(𝑠) = − 𝜕𝐹

𝜕𝑇
, (3.10)

and the internal energy can be written as

𝑈 = ⟨𝐻(𝑠)⟩ =
⟨

𝑁
∑

𝑖=1

{

𝑣𝑐 [
1
2
𝐺(𝜖𝑒𝑖 )

2 − 𝜎̄𝜖𝑖] + 𝛾(𝜖𝑝𝑖 )𝜉𝑐
}⟩

+ ⟨𝐻 int (𝑠)⟩. (3.11)

A remark is in order here regarding the interpretation of the current statistical model that is specific to the elasto-plastic properties
of solids. The thermodynamic relation (3.8) and the concavity of free energy (3.9) (𝜎̄ ↦ 𝐹 (𝛽,𝑁, 𝜎̄)) are standard in a statistical model.
However, when applying the free energy (3.7) for the prediction of the macroscopic response of an elasto-plastic body, we shall
notice that plastic strain, once activated, is not recoverable; plastic processes, dissipating energy, are irreversible. To incorporate
this feature, we separate the internal energy into four parts:14

𝑈 = ⟨𝐻(𝑠)⟩ =
⟨

𝑁
∑

𝑖=1

{

𝑣𝑐 [
1
2
𝐺(𝜖𝑒𝑖 )

2 − 𝜎̄𝜖𝑖] + 𝛾(𝜖𝑝𝑖 )𝜉𝑐
}⟩

+ ⟨𝐻 int (𝑠)⟩

= 𝑈 el − 𝜎̄𝜖𝑉 + 𝑈dsp + 𝑈 int ,

(3.12)

where

𝑈 el =
⟨

𝑁
∑

𝑖=1

{

𝑣𝑐[
1
2
𝐺(𝜖𝑒𝑖 )

2
⟩

, 𝑈dsp =
⟨

𝑁
∑

𝑖=1
𝛾(𝜖𝑝𝑖 )𝜉𝑐

⟩

, 𝑈 int = ⟨𝐻 int (𝑠)⟩.

epresents the elastic, dissipated, and interaction energy, respectively. Suppose that the interaction Hamiltonian 𝐻 int (𝑠) involves only
lastic strain. We postulate that the macroscopic response of an elasto-plastic body is dictated by the total internal energy (3.12) in
monotonic loading process (𝜎̄ ↗) whereas the macroscopic response is governed only by the elastic part 𝑈 el of internal energy in
subsequent unloading process (𝜎̄ ↘).

14 Similar decomposition can be done for the free energy once the interaction Hamiltonian is specified and will be useful for differentiating loading and
7

nloading processes (Cf. (4.4)).
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4. Noninteraction model (ideal plasticity)

In this section, we explore the implications of the statistical model outlined in the last section. Upon setting 𝐻 int (𝑠) ≡ 0, we have
simplified non-interacting model, and the partition function for the system is given by

𝑍 = 𝑍𝑁
1 ,

here the partition function for a single site, by (3.1), can be written as

𝑍1 =
∑

(𝜖𝑒 ,𝜖𝑝)∈S
𝑒−𝛽𝐻̂(𝜖𝑒 ,𝜖𝑝;𝜎̄)

=
∑

(𝜖𝑒 ,𝜖𝑝)∈S
𝑒−𝛽

{

𝑣𝑐 [
1
2𝐺(𝜖𝑒)2−𝜎̄𝜖]+𝛾(𝜖𝑝)𝜉𝑐

}

=
∑

𝑗∈Z
𝑒−𝛽[𝛾(𝑗𝜖

𝑝
∗)𝜉𝑐−𝑗𝑣𝑐 𝜎̄𝜖

𝑝
∗]
∑

𝑘∈Z
𝑒−𝛽𝑣𝑐 [

1
2𝐺(𝑘𝜖0)2−𝜎̄(𝑘𝜖0)].

(4.1)

onverting the summation over 𝑘 ∈ Z into an integral, we arrive at

𝑍𝑒
1 = 1

𝜖0 ∫R
𝑒−𝛽𝑣𝑐 [

1
2𝐺(𝜖𝑒)2−𝜎̄𝜖𝑒]𝑑𝜖𝑒 = 1

𝜖0
𝑒
𝛽𝑣𝑐 𝜎̄2
2𝐺

√

2𝜋
𝛽𝑣𝑐𝐺

. (4.2)

herefore, the partition function can be written as

𝑍1 = 𝑍𝑒
1𝑍

𝑝
1 , 𝑍𝑝

1 ∶=
∑

𝑗∈Z
𝑒−𝛽[𝛾(𝑗𝜖

𝑝
∗)𝜉𝑐−𝑗𝑣𝑐 𝜎̄𝜖

𝑝
∗]. (4.3)

n other words, the partition function is simply the product of the partition function associated with elastic strain and that associated
ith plastic strain. Consequently, by (3.7), (4.2) and (4.8) the free energy is given by

𝐹 (𝛽,𝑁, 𝜎̄) = −𝑘𝐵𝑇 log(𝑍1)𝑁 =∶ 𝐹 el(𝛽,𝑁, 𝜎̄) + 𝐹 pl(𝛽,𝑁, 𝜎̄), (4.4)

here

𝐹 el(𝛽,𝑁, 𝜎̄) = −𝑘𝐵𝑇𝑁 log𝑍𝑒
1 = −𝑉 𝜎̄2

2𝐺
− 𝑁

2
𝑘𝐵𝑇 log 𝑇 + 𝑐𝑜𝑛𝑠𝑡.

𝐹 pl(𝛽,𝑁, 𝜎̄) = −𝑘𝐵𝑇𝑁 log𝑍𝑝
1 .

(4.5)

To proceed, we shall specify the form of the activation energy 𝛾 = 𝛾(𝜖𝑝). As discussed in Section 2, the particular form of
activation energy depends on the microscopic mechanisms of plastic strains and has to be postulated for the current statistical
model as a constitutive relation.

To get some physical intuition, we first consider the minimum model with the plastic strain activation energy given by (2.3)
with 𝑐1 = 0. This minimum model will give rise to the familiar behavior of ideal plasticity and other thermo-elasto-plastic properties
that are compared reasonably well with experiments. To see this, we notice that the partition function (4.3) associated with plastic
strain for the minimum model, 𝑍𝑝

1 , can be written as

𝑍𝑝
1 = 1 +

+∞
∑

𝑗=1
𝑒
−𝑗𝑣𝑐𝛽𝜖

𝑝
∗(

𝛾0𝜉𝑐
𝑣𝑐 𝜖

𝑝
∗
−𝜎̄)

+
−∞
∑

𝑗=−1
𝑒
𝑗𝑣𝑐𝛽𝜖

𝑝
∗(

𝛾0𝜉𝑐
𝑣𝑐 𝜖

𝑝
∗
+𝜎̄)

. (4.6)

f

|𝜎̄| < 𝜎𝑌 ∶=
𝛾0𝜉𝑐
𝑣𝑐𝜖

𝑝
∗
, (4.7)

the sums of an infinite geometric series in (4.6) can be analytically evaluated to obtain

𝑍𝑝
1 = 1 + 1

𝑒𝛽𝑣𝑐𝜖
𝑝
∗(−𝜎̄+𝜎𝑌 ) − 1

+ 1
𝑒𝛽𝑣𝑐𝜖

𝑝
∗(𝜎̄+𝜎𝑌 ) − 1

= 1 + 1
𝑒(1−𝜎̂)∕𝑇̂ − 1

+ 1
𝑒(1+𝜎̂)∕𝑇̂ − 1

,
(4.8)

here the nondimensionalized temperature and applied stress are defined as

𝑇̂ =
𝑘𝐵𝑇

𝑣𝑐𝜖
𝑝
∗𝜎𝑌

=
𝑘𝐵𝑇
𝛾0𝜉𝑐

and 𝜎̂ = 𝜎̄
𝜎𝑌

. (4.9)

he free energy of the system is given by (4.4) and (4.5) with the plastic part given by

𝐹 pl(𝛽,𝑁, 𝜎̄) = −𝑘𝐵𝑇𝑁 log
[

1 + 1
𝑒(1−𝜎̂)∕𝑇̂ − 1

+ 1
𝑒(1+𝜎̂)∕𝑇̂ − 1

]

. (4.10)

The thermo-elastic–plastic properties of the sample are completely determined by a thermodynamic potential, e.g., the free
nergy (4.4). In particular, the strain–stress relation in the loading process, by (3.8), can be written as

𝜖 = − 1 𝜕𝐹 = 𝜖𝑒 + 𝜖𝑝, (4.11)
8
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Fig. 4. Contours of 𝐺eff

𝐺
on 𝜎̂-𝑇̂ plane. The dark black line corresponds to 𝐺eff

𝐺
= 0.1. The independent parameters for the non-interaction model are considered

as 𝜉𝑐 = 2 nm, 𝜎𝑌 = 79 MPa, 𝜖𝑝∗ = 10−4, 𝐺 = 26 GPa.

where the macroscopic elastic strain and plastic strain are given by

𝜖𝑒 =
∑

𝑘,𝑗∈Z
𝑘𝜖0

𝑒−𝛽
{

𝑣𝑐 [
1
2𝐺(𝑘𝜖0)2−𝜎̄𝑘𝜖0]+𝛾(𝑗𝜖

𝑝
∗)𝜉𝑐−𝜎̄𝑣𝑐 𝑗𝜖

𝑝
∗
}

𝑍1
= − 1

𝑉
𝜕𝐹 el

𝜕𝜎̄
= 𝜎̄

𝐺
,

𝜖𝑝 =
∑

𝑘,𝑗∈Z
𝑗𝜖𝑝∗

𝑒−𝛽
{

𝑣𝑐 [
1
2𝐺(𝑘𝜖0)2−𝜎̄𝑘𝜖0]+𝛾(𝑗𝜖

𝑝
∗)𝜉𝑐−𝜎̄𝑣𝑐 𝑗𝜖

𝑝
∗
}

𝑍1
= − 1

𝑉
𝜕𝐹 pl

𝜕𝜎̄

=∶ 𝜖𝑝∗𝜔(𝜎̂, 𝑇̂ ).

(4.12)

where 𝜔(𝜎̂, 𝑇̂ ) can be interpreted as the number of ‘‘plastons’’ induced by the (normalized) stress and temperature (𝜎̂, 𝑇̂ ), and is
given by

𝜔(𝜎̂, 𝑇̂ ) =
sinh(𝜎̂∕𝑇̂ )

cosh(1∕𝑇̂ ) − cosh(𝜎̂∕𝑇̂ )
. (4.13)

‘‘Plastons" can be thought of as hypothetical quasi-particles that get excited by applied stress or temperature to carry the flow of
plastic deformation in the material (analogous to electron particles that get excited due to applied electric voltage to carry the flow
of electric current in a conductor).

The macroscopic shear modulus defined by (3.9) can be written as

𝐺eff (𝑇 , 𝜎̄) = −𝑉
( 𝜕2𝐹
𝜕𝜎̄2

)−1
= 𝐺

[

1 +
𝐺𝜖𝑝∗
𝜎𝑌 𝑇̂

𝜑(𝜎̂, 𝑇̂ )
]−1

, (4.14)

where

𝜑(𝜎̂, 𝑇̂ ) =
cosh(1∕𝑇̂ ) cosh(𝜎̂∕𝑇̂ ) − 1
(

cosh(1∕𝑇̂ ) − cosh(𝜎̂∕𝑇̂ )
)2

. (4.15)

Moreover, the heat capacity associated with plastic strains at a constant applied stress 𝜎̄ is given by

𝐶𝜎̄ = −𝑇 𝜕2𝐹
𝜕𝑇 2

= 𝑁
2
𝑘𝐵𝑇 − 𝑇 𝜕2𝐹 pl

𝜕𝑇 2
. (4.16)

We fit the model with the experimental data for Aluminum (Carreker and Hibbard, 1957). We match the yield stress for Al
(considered as stress corresponding to the strain of 0.5%) at 300 K using the model and experiment. The independent parameters
for the non-interaction model are: 𝜉𝑐 = 2 nm, 𝜎𝑌 = 79 MPa, 𝜖𝑝∗ = 10−4, 𝐺 = 26 GPa and 𝑏 = 0.286 nm.

Fig. 4 shows plot of 𝐺eff

𝐺 on 𝜎̂-𝑇̂ plane obtained using (4.14). We observe that for a fixed temperature 𝑇̂ , the macroscopic shear
modulus 𝐺eff decreases as we increase the applied stress 𝜎̄, resulting in material yielding due to plastic deformation. Empirically,
we may choose a threshold value of 𝐺eff

𝐺 , e.g., 0.1, as the critical value indicating the sample would yield and collapse due to
unconstrained plastic flow. The contour line corresponding to 𝐺eff

𝐺 = 0.1 shown in Fig. 4 divides the 𝜎̂-𝑇̂ plane into two regions:
lower region corresponds to the un-yielded phase, and the upper region corresponds to the yielded plastic phase. This phase transition
observed at the macroscale is consistent with our postulate that ‘‘plasticity is a phase transition’’.
9
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The thermodynamic relations (4.11)–(4.16) are complicated and not amenable to physical interpretations in spite of being closed-

orm. To relate with the classical description of thermo-elastoplasticity, we explore a few regions on 𝜎̂-𝑇̂ plane where the predicted
thermo-elastoplastic relations are particularly simple.

1. Linear elasticity regime. In the regime of low temperature and small applied stress, i.e.,

𝑇̂ ≪ 1 and 0 < 𝜎̂ ≪ 1, (4.17)

by (4.12)–(4.13) and to the leading-order approximation, the plastic strain is given by
𝜖𝑝

𝜖𝑝∗
= 𝜔(𝜎̂, 𝑇̂ ) ≈ 𝜎̂

𝑇̂ (cosh(1∕𝑇̂ ) − 1)
≪ 1. (4.18)

Therefore, the strain–stress relation (4.11) is well approximated by the familiar Hooke’s law:

𝜖 = 𝜖𝑒 and 𝜎̄ = 𝐺𝜖𝑒.

2. Temperature-dependence of shear modulus. The macroscopic shear modulus 𝐺eff defined by (3.9) or (4.14) in general
depends on the temperature, size, and applied stress. For simplicity, we consider the shear modulus at the zero applied
stress:

𝐺eff
0 (𝑇 ) = −𝑉

( 𝜕2𝐹
𝜕𝜎̄2

)−1
|

|

|𝜎̄=0
= 𝐺

[

1 +
𝐺𝑣𝑐 (𝜖

𝑝
∗)2

𝑘𝐵𝑇
𝜑(0, 𝑇̂ )

]−1
.

where, by (4.25),

𝜑(0, 𝑇̂ ) = 1
cosh(1∕𝑇̂ ) − 1

≈ 2𝑒−1∕𝑇̂ ,

and hence

𝐺eff
0 (𝑇 ) =

( 𝜕𝜖
𝜕𝜎̄

)−1
|

|

|𝜎̄=0
≈ 𝐺

(

1 +
2𝐺𝑣𝑐 (𝜖

𝑝
∗)2

𝑘𝐵𝑇
𝑒−1∕𝑇̂

)−1
.

3. Melting temperature. In the regime of high temperature and small applied stress, i.e.,

𝑇̂ ≫ 1 and 0 < 𝜎̂ ≪ 1, (4.19)

by (4.14) we have

𝐺eff
0 (𝑇 ) =

( 𝜕𝜖
𝜕𝜎̄

)−1
|

|

|𝜎̄=0
= 𝐺

[

1 +
𝐺𝑣𝑐 (𝜖

𝑝
∗)2

𝑘𝐵𝑇
𝜑(0, 𝑇̂ )

]−1
≈ 𝐺

(

1 +
2𝐺𝑘𝐵𝑇
𝜎2𝑌 𝑣𝑐

)−1
.

Empirically, we may identify the melting temperature 𝑇melt as the temperature such that 𝐺eff
0 (𝑇 ) ∼ 𝐺∕𝑀1 for some large

number 𝑀1, say, 10, i.e.,

2𝐺𝑘𝐵𝑇
𝜎2𝑌 𝑣𝑐

∼ 𝑀1 ⇒ 𝑘𝐵𝑇melt ∼ 𝑀1
𝜎2𝑌 𝑣𝑐
2𝐺

. (4.20)

Experimentally, the melting temperature 𝑇melt , yield stress 𝜎𝑌 , and shear modulus (at 𝑇 = 0) could be conveniently measured
or extrapolated. Consequently, we could determine the size of element 𝜉𝑐 as

𝜉𝑐 ∼
( 2𝐺𝑘𝐵𝑇melt

𝑀1𝜎2𝑌

)1∕3.

Further,

𝑇̂ =
𝑘𝐵𝑇

𝑣𝑐𝜖
𝑝
∗𝜎𝑌

∼ 𝑇
𝑇melt

𝑀1
𝜎𝑌

2𝐺𝜖𝑝∗
.

4. Yield stress. In the regime of large applied stress in the sense that

𝛽𝑣𝑐𝜖
𝑝
∗(−𝜎̄ + 𝜎𝑌 ) =

1 − 𝜎̂
𝑇̂

≪ 1, (4.21)

the plastic strain–stress relation (4.11) is well approximated by

𝜖𝑝 = 𝜖𝑝∗𝜔(𝜎̂, 𝑇̂ ) ≈ 𝜖𝑝∗
[ 𝑇̂
1 − 𝜎̂

− 1
2
coth(1∕𝑇̂ ) + 𝑂( 1 − 𝜎̂

𝑇̂
)
]

. (4.22)

Empirically, we may set the macroscopic temperature-dependent yield stress 𝜎̄𝑌 as the applied stress such that 𝜖𝑝 =
1∕𝑀2, 𝑀2 ∼ 103, i.e.,

𝜎̄𝑌 (𝑇 ) = 1 −𝑀2𝜖
𝑝
∗𝑇̂ = 1 −𝑀1𝑀2

𝜎𝑌 𝑇 . (4.23)
10

𝜎𝑌 2𝐺 𝑇melt
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5. Flow stress. In the regime (4.21) of large applied stress, from (4.14) we find the stress and temperature-dependent
macroscopic shear modulus as

𝐺eff (𝜎̄, 𝑇 ) =
( 𝜕𝜖
𝜕𝜎̄

)−1
≈ 𝐺

[

1 +
𝐺𝑣𝑐 (𝜖

𝑝
∗)2𝑇̂ 2

𝑘𝐵𝑇 (1 − 𝜎̂)

]−1
. (4.24)

since

𝜑(𝜎̂, 𝑇̂ ) = 𝑇̂ 2

1 − 𝜎̂
− 1

2
𝑇̂ coth(1∕𝑇̂ ) + 𝑂( 1 − 𝜎̂

𝑇̂
). (4.25)

Empirically, we may set the macroscopic flow stress 𝜎̄𝐹 as the applied stress such that (𝑀3 ∼ 102)

𝐺eff (𝜎̄𝐹 , 𝑇 )
𝐺

∼ 1
𝑀3

⇒
𝐺𝑣𝑐 (𝜖

𝑝
∗)2𝑇̂ 2

𝑘𝐵𝑇 (1 − 𝜎̂)
∼ 𝑀3.

That is,
𝜎̄𝐹 (𝑇 )
𝜎𝑌

= 1 − 1
2
𝑀1
𝑀3

𝑇
𝑇melt

. (4.26)

In practice, both the macroscopic yield stress (4.23) and flow stress (4.26) are within 90% of 𝜎𝑌 , and hence are regarded
essentially as the same.

6. Change of heat capacity in yield propagation. The heat capacity can be obtained from the total free energy using (4.16).
Recall the total free energy from (4.10) as,

𝐹 pl = −𝑘𝐵𝑇𝑁 log
[

1 + 1
𝑒(1−𝜎̂)∕𝑇̂ − 1

+ 1
𝑒(1+𝜎̂)∕𝑇̂ − 1

]

.

(i) In the regime (4.17) of low temperature 𝑇̂ ≪ 1 and low applied stress 𝜎̂ ≪ 1,

𝐹 pl(𝑇 ,𝑁, 𝜎̄) ≈ −𝑘𝐵𝑇𝑁 log
[

1 + 2𝑒−1∕𝑇̂
]

≈ −2𝑘𝐵𝑇𝑁𝑒−1∕𝑇̂ .

(ii) In the regime of high temperature 𝑇̂ ≫ 1 and zero applied stress 𝜎̂ ≡ 0, we have

𝐹 pl = −𝑘𝐵𝑇𝑁 log
[

1 + 2
𝑒1∕𝑇̂ − 1

]

.

(iii) In the regime (4.21) of low temperature 𝑇̂ ≪ 1 and large applied stress 𝜎̄ > 𝜎̄𝐹 ,

𝐹 pl(𝑇 ,𝑁, 𝜎̄) = −𝑘𝐵𝑇𝑁 log
[

1 + 𝑇̂
1 − 𝜎̂

]

.

The above derived quantities can be evaluated using the appropriate values for empirical parameters 𝑀1,𝑀2,𝑀3 along with
he model parameters fitted with the experimental data (as explained earlier to obtain Fig. 4). This also provides a way to verify
he model with the experiments and simulations by comparing the observable quantities, such as shear modulus and melting
emperature. From the above discussions, we see the minimum non-interacting model reproduces macroscopic phenomena of ideal
lasticity that are quantitatively comparable with experimental data. The model could be enriched to include additional physical
echanisms such as strain/work hardening effects, strain softening effects, and effects of multiple slips system by considering more

omplex plastic strain activation energy 𝛾 = 𝛾(𝜖𝑝), which will be briefly discussed in Appendix C.

. Interaction model

In this section, we present the details of the interaction model. The non-interaction model, though reasonable, neglects quite a
ew important effects. To be specific, we assume the sample is sheared by applied traction on the top surface, as shown in Fig. 1.
ecause of geometric constraints and physical interaction, plastic strains at different spatial sites would interact with each other and

nteract with elastic strains. Possible microscopic mechanisms include interactions between various sources of plastic strains such as
islocations, dislocation loops, stacking faults, voids, inclusions of a second crystalline phase, etc. It is insurmountable to rigorously
ccount for interactions between plastic strains from the first principles or an atomistic model. As a microscopic model, the plastic
train introduced here includes all inelastic non-recoverable strains in the process of deformation. In addition, from a statistical
iewpoint, it is not unreasonable to postulate the interactions between plastic strains at two different sites are homogeneous and
sotropic and hence, the interaction energy depends only on the distance between two sites:

𝐻 int ({𝜖𝑝𝑖 }) =
1
2
∑

𝑖𝑗
𝐽𝑖𝑗𝜖

𝑝
𝑖 𝜖

𝑝
𝑗 , (5.1)

here the interaction coefficients are given by

𝐽𝑖𝑗 = 𝐽 (|𝐱𝑖 − 𝐱𝑗 |).

or ease of notion, define 𝐽 (0) = 0 (instead of being singular). For reasonable physical behaviors, we require that
11

𝐽𝑖𝑗 ≥ 0 if 𝑖 ≠ 𝑗,
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meaning that interaction between two plastic strains of the same (resp. opposite) direction is repulsive (resp. attractive). We
could include more terms in the Hamiltonian to account for interactions between elastic strains and plastic strains, and/or set the
interaction coefficients 𝐽𝑖𝑗 as random variables. At this stage, we target at a minimum interaction model and focus on interactions
between plastic strains at different sites for predictive modeling.

For brevity and future convenience, we introduce the number density 𝜌(𝐱) in quanta of 𝜖𝑝∗, i.e., a smooth field 𝜌 = 𝜌(𝐱) is such
that

𝜖𝑝𝑖 = 𝜖𝑝∗𝑣𝑐𝜌(𝐱𝑖), (5.2)

nd denote by (𝜖𝑝𝑖 = ⟨𝜖𝑝𝑖 ⟩ = 𝜖𝑝∗ 𝜌̄(𝐱𝑖)𝑣𝑐)

𝜙𝑖 = 𝜙(𝐱𝑖) =
1
𝑣𝑐

𝑁
∑

𝑗=1
𝐽𝑖𝑗𝜖

𝑝
𝑗 ,

𝜙̄𝑖 = ⟨𝜙𝑖⟩ =
1
𝑣𝑐

𝑁
∑

𝑗=1
𝐽𝑖𝑗𝜖

𝑝
𝑗 = 𝜖𝑝∗

𝑁
∑

𝑗=1
𝐽𝑖𝑗 𝜌̄𝑗 .

(5.3)

Then we rewrite the interaction energy (5.1) as

𝐻 int = 1
2
∑

𝑖𝑗
𝐽𝑖𝑗𝜖

𝑝
𝑖 𝜖

𝑝
𝑗 =

𝑣𝑐
2

∑

𝑖
𝜖𝑝𝑖 𝜙(𝐱𝑖)

=
𝑣𝑐
2

∑

𝑖
(𝜖𝑝𝑖 − 𝜖𝑝𝑖 + 𝜖𝑝𝑖 )(𝜙(𝐱𝑖) − 𝜙̄(𝐱𝑖) + 𝜙̄(𝐱𝑖))

= 𝑣𝑐
∑

𝑖

[ 1
2
(𝜖𝑝𝑖 − 𝜖𝑝𝑖 )(𝜙𝑖 − 𝜙̄𝑖) + 𝜖𝑝𝑖 𝜙̄𝑖 −

1
2
𝜖𝑝𝑖 𝜙̄𝑖

]

.

(5.4)

.1. Mean-field approximation

For a mean-field approximation, we will neglect the first term on the right-hand side of (5.4), namely, the term pertaining to
he fluctuation of the plastic strains at each site. The effective Hamiltonian within mean-field approximation can be written as (Cf.
3.2))

𝐻eff (𝑠; 𝜎̄) =
𝑁
∑

𝑖=1

{

𝑣𝑐 [
1
2
𝐺(𝜖𝑒𝑖 )

2 − 𝜎̄𝜖𝑒𝑖 ] + 𝛾(𝜖𝑝𝑖 )𝜉𝑐 − 𝑣𝑐 𝜎̄
eff
𝑖 𝜖𝑝𝑖 −

1
2
𝑣𝑐 𝜙̄𝑖𝜖

𝑝
𝑖

}

∀ 𝑠 ∈ 𝛺, (5.5)

where the effective applied stress on the 𝑖th site is given by

𝜎̄eff𝑖 = 𝜎̄ − 𝜙̄𝑖.

By similar calculations as in (4.1), we find the associated partition function as:

𝑍(𝛽,𝑁, 𝜎̄) =
∑

(𝜖𝑒1 ,𝜖
𝑝
1 )∈S

⋯
∑

(𝜖𝑒𝑁 ,𝜖𝑝𝑁 )∈S
𝑒−𝛽𝐻

eff (𝑠;𝜎̄)

=
∑

𝑗∈Z

∑

𝑘∈Z

[ 𝑁
∏

𝑖=1
𝑒−𝛽𝑣𝑐 [

1
2𝐺(𝑘𝜖0)2−𝜎̄(𝑘𝜖0)]

𝑁
∏

𝑖=1
𝑒
1
2 𝛽𝑣𝑐 𝜙̄𝑖𝜖

𝑝
𝑖 𝑒−𝛽[𝛾(𝑗𝜖

𝑝
∗)𝜉𝑐−𝑗𝑣𝑐 𝜎̄

eff
𝑖 𝜖𝑝∗]

]

= (𝑍𝑒
1)

𝑁

[ 𝑁
∏

𝑖=1
𝑒
1
2 𝛽𝑣𝑐 𝜙̄𝑖𝜖

𝑝
𝑖 𝑍𝑝

1𝑖

]

,

(5.6)

here, in parallel to (4.3), (4.6), and (4.8), the partition function associated with the plastic strain at the 𝑖th site can be written (for
he minimum model of ideal plasticity, i.e. 𝑐1 = 0) as

𝑍𝑝
1𝑖(𝜙̄𝑖; 𝜎̄, 𝛽) = 1 +

+∞
∑

𝑗=1
𝑒−𝑗𝑣𝑐𝛽𝜖

𝑝
∗(𝜎𝑌 −𝜎̄

eff
𝑖 ) +

−∞
∑

𝑗=−1
𝑒𝑗𝑣𝑐𝛽𝜖

𝑝
∗(𝜎𝑌 +𝜎̄

eff
𝑖 )

= 1 + 1

𝑒(1−𝜎̂
eff
𝑖 )∕𝑇̂ − 1

+ 1

𝑒(1+𝜎̂
eff
𝑖 )∕𝑇̂ − 1

.
(5.7)

nce again, the free energy of the system is obtained as

𝐹 = −𝑘𝐵𝑇 log𝑍 =∶ 𝐹 el + 𝐹 pl,

here

𝐹 pl({𝜙̄𝑖, 𝜖𝑖}; 𝛽, 𝜎̄) =
𝑁
∑

[

− 1𝑣𝑐 𝜙̄𝑖𝜖
𝑝
𝑖 − 𝑘𝐵𝑇 log𝑍𝑝

1𝑖

]

. (5.8)
12

𝑖=1 2
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Further, the average plastic strain at the 𝑖th site is given by (cf., (4.13))

𝜖𝑝𝑖 =
∑

𝑗∈Z
𝑗𝜖𝑝∗

𝑒−𝛽𝑣𝑐 𝑗𝜖
𝑝
∗(sgn(𝑗)𝜎𝑌 −𝜎̄

eff
𝑖 )

𝑍𝑝
1𝑖

= 1
𝑣𝑐

𝜕
𝜕𝜙̄𝑖

[

−𝑘𝐵𝑇 log𝑍𝑝
1𝑖(𝜙̄𝑖; 𝜎̄, 𝛽)

]

= 𝜖𝑝∗𝜔(𝜎̂eff𝑖 , 𝑇̂ ),

(5.9)

and the local strain–stress relation at the 𝑖th site is given by

𝜖𝑖 = 𝜖𝑒 + 𝜖𝑝𝑖 , 𝜖𝑒 = 𝜎̄
𝐺
.

Combining (5.9) with (5.3)2, we can, in principle, determine the unknown (𝜖𝑝𝑖 , 𝜙̄𝑖) in terms of the actual applied stress 𝜎̄ for
self-consistency. Alternatively, Eqs. (5.3) and (5.9)2 can be identified as the saddle point of the following function:

𝛹 [{𝜖𝑖, 𝜙̄𝑖}; 𝜎̄, 𝛽] =
𝑁
∑

𝑖=1

[

−𝑘𝐵𝑇 log𝑍𝑝
1𝑖(𝜙̄𝑖; 𝜎̄, 𝛽)

]

+ 1
2

𝑁
∑

𝑖,𝑗=1
𝐽𝑖𝑗𝜖

𝑝
𝑖 𝜖

𝑝
𝑗 − 𝑣𝑐

𝑁
∑

𝑖=1
𝜙̄𝑖𝜖

𝑝
𝑖 , (5.10)

hence
𝜕
𝜕𝜙̄𝑖

𝛹 [{𝜖𝑖, 𝜙̄𝑖}; 𝜎̄, 𝛽] = 0 ⇔ (5.9),

𝜕
𝜕𝜖𝑝𝑖

𝛹 [{𝜖𝑖, 𝜙̄𝑖}; 𝜎̄, 𝛽] = 0 ⇔ (5.3)2.
(5.11)

y (5.3)2, we recognize the function 𝛹 [{𝜖𝑖, 𝜙̄𝑖}; 𝜎̄] in (5.10) is the free energy (5.8) in a different form. In addition, as a function of
𝜖𝑖, 𝜙̄𝑖}, 𝛹 [{𝜖𝑖, 𝜙̄𝑖}; 𝜎̄, 𝛽] is strictly convex for each 𝜖𝑖, and strictly concave for each 𝜙̄𝑖 (Cf. (3.9)).

To proceed, it will be convenient to take a continuum viewpoint and convert the summations in (5.10) into integrals. Suppose
hat 𝐷 ⊂ R𝑑 is regular and summation in (5.3)2 are over 𝑁-grid points in 𝐷 ∩ 𝜉𝑐Z𝑑 . Then, by (5.7) the single-sum terms in (5.10)
an be approximated as

𝑁
∑

𝑖=1

[

−𝑘𝐵𝑇 log𝑍𝑝
1𝑖(𝜙̄𝑖; 𝜎̄, 𝛽)

]

⟶ 𝐹 pl
⋆ [𝜙̄; 𝜎̄, 𝛽] ∶=

−
𝑘𝐵𝑇
𝑣𝑐 ∫𝐷

log
[

1 + 1
𝑒(1−𝜎̂eff )∕𝑇̂ − 1

+ 1
𝑒(1+𝜎̂eff )∕𝑇̂ − 1

]

(

𝜎̂eff =
𝜎̄ − 𝜙̄
𝜎𝑌

)

,

(5.12)

nd (recall that 𝜖𝑝𝑖 = 𝑣𝑐𝜖
𝑝
∗ 𝜌̄(𝐱𝑖))

𝑣𝑐
𝑁
∑

𝑖=1
𝜙̄𝑖𝜖

𝑝
𝑖 ⟶ 𝑣𝑐𝜖

𝑝
∗ ∫𝐷

𝜙̄𝜌̄. (5.13)

or the double-sum interaction term in (5.10), i.e., 1
2
∑𝑁

𝑖,𝑗=1 𝐽 (𝐱𝑖 − 𝐱𝑗 )𝜖
𝑝
𝑖 𝜖

𝑝
𝑗 , we can convert it into a bilinear form as follows:

1
2

𝑁
∑

𝑖,𝑗=1
𝐽 (𝐱𝑖 − 𝐱𝑗 )𝜖

𝑝
𝑖 𝜖

𝑝
𝑗 ⟶ ⟨𝐻 int

⟩[𝜌̄] = 1
2 ∫𝐷

𝜌̄[𝜌̄], (5.14)

here [ ] is a self-adjoint linear operator that is dictated by the interaction potential 𝐽 (𝐱) and will be explicitly calculated later.
onsequently, by (5.12)–(5.14) the variational principle corresponding to (5.10) in the continuum setting can be written as

min
𝜌̄

max
𝜙̄

𝛹⋆[𝜌̄, 𝜙̄; 𝜎̄, 𝛽], 𝛹⋆[𝜌̄, 𝜙̄; 𝜎̄, 𝛽] = 𝐹 pl
⋆ [𝜙̄; 𝜎̄, 𝛽] + ⟨𝐻 int

⟩[𝜌̄] − 𝑣𝑐𝜖
𝑝
∗ ∫𝐷

𝜙̄𝜌̄. (5.15)

rom von Neumann’s min–max theorem (Neumann, 1928), the solution to the above problem exists and is unique since the functional
s strictly concave with respect to 𝜙̄ and strictly convex with respect to 𝜌̄.

.2. Interaction law

In this section, we provide the rationale for using the interaction potential among microscopic elasto-plastic units as a power law.
he interactions among two parallel dislocation lines spaced by a distance |𝐱| in a plastically deforming body are of the logarithmic
orm (log |𝐱|). Our microscopic model is, however, coarser than the scale of dislocations, and as such, we may consider interacting
nclusions with a plastic eigenstrain. While the interaction between two isolated inclusions in an infinite linear elastic media is well-
efined (1∕|𝐱|2), the exact interaction with multiple such inclusions (that accounts for screening), a surrounding matrix that is itself
eforming plastically and with possible image forces due to boundaries, is unknown. In addition, we expect processing conditions
o also influence this interaction. In other words, while it is hard to pin down the exact interaction law, a power law is a reasonable
roposal in the form of (1∕|𝐱|𝛼) for the pair-wise interactions among elasto-plastic units, where 𝛼 is a phenomenological parameter
hat allows varying the qualitative nature of the interactions. Specifically, the pair-wise interaction potential 𝐽 (𝐱) is specified as a
wo-piece function with the long-range interaction being a power law:

𝐽 (𝐱) =
{

𝐽core(𝐱) if |𝐱| < 𝐶𝜉𝑐 ,
𝛬𝛼

(5.16)
13

|𝐱|𝛼 if |𝐱| ≥ 𝐶𝜉𝑐 ,
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Fig. 5. Elasto-plastic behavior for microscopic, no interaction and local interaction case. The independent parameters for the non-interaction model are considered
as 𝜉𝑐 = 2 nm, 𝜎𝑌 = 79 MPa, 𝜖𝑝∗ = 10−4, 𝐺 = 26 GPa and 𝑏 = 0.286 nm. The independent parameters in the local interaction case are considered as 𝑞 = 4, 𝛼 = 4.5
and 𝛬𝛼 is chosen by setting 𝑞𝛬𝛼

(𝜉𝛼𝑐 𝑣𝑐 )
= 100 MPa.

where 0 < 𝐶 < 1 is a constant, and 𝛬𝛼 > 0 reflects the strength of the long-range interaction and will be specified later. The core
interaction potential 𝐽core(𝐱) can, in principle, be calculated from a specified microscopic interaction mechanism. However, we do
not expect the local core interaction potential 𝐽core(𝐱) would affect the size-dependent properties of a body. Since our main focus in
this work lies in the nonlocal effect of long-range interactions, we neglect the core interaction potential and set 𝐽core(𝐱) ≡ 0.

Depending on the exponent 𝛼, there are three regimes of interactions that should be treated differently, as explained in the
following sections.

5.3. Local interaction

First, we consider the case of local interaction. If 𝛼 > 𝑑 + 2, the terms in (5.14) decay fast as |𝐱𝑗 − 𝐱𝑖| increases. Therefore, it
suffices to consider ‘‘nearest-neighbor’’ interactions. Let 𝑖 denote pairs of nearest-neighbors. Then (5.14) may be approximated by

𝜙̄(𝐱𝑖) ≈
1
𝑣𝑐

∑

𝑗∈𝑖

𝐽 (𝐱𝑖 − 𝐱𝑗 )𝜖
𝑝
𝑗 ≈

𝑞𝜖𝑝∗𝛬𝛼
𝜉𝛼𝑐

𝜌̄(𝐱𝑖), (5.17)

where 𝑞 is the number of nearest neighbors for an interior grid point, and the last line follows from the assumption that the average
density 𝜌̄ = 𝜌̄(𝐱) does not vary significantly over the lengthscale 𝜉𝑐 . Moreover, the average interaction energy can be approximated
as

⟨𝐻 int
⟩[𝜖𝑝] = 1

2

𝑁
∑

𝑖,𝑗=1
𝐽 (𝐱𝑖 − 𝐱𝑗 )𝜖

𝑝
𝑖 𝜖

𝑝
𝑗 =

𝑣𝑐
2

𝑁
∑

𝑖=1
𝜙̄𝑖𝜖

𝑝
𝑖 →

𝑣𝑐𝑞(𝜖
𝑝
∗)2𝛬𝛼

2𝜉𝛼𝑐 ∫𝐷
𝜌̄2𝑑𝐱. (5.18)

Therefore, the Euler–Lagrange’s equation associated with the variational problem (5.15), or equivalently, the continuum field
equations corresponding to (5.11) can be written as (cf., (4.13))

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑐 𝜌̄ = 𝜔(
𝜎̄ − 𝜙̄
𝜎𝑌

, 𝑇̂ ),

𝜙̄ =
𝑞𝜖𝑝∗𝛬𝛼
𝜉𝛼𝑐

𝜌̄.
(5.19)

We combine the two self-consistent equations in (5.19) into one non-linear equation and solve it explicitly. Fig. 5 shows the
obtained macroscopic elasto-plastic response for the local interaction case. We observe that for a uniform applied stress 𝜎̄, the
solution for the local interaction case is uniform with no size-effect. The flow stress for the local interaction in Fig. 5 is observed to
be higher than in the non-interaction case. This higher flow stress for the local interaction is caused by the repulsive interactions
among plastic strains at different elements that would resist the plastic flow, effectively resulting in strain hardening.
14
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5.4. Nonlocal interaction

Next, we consider a long-range interaction case that gives rise to a nonlocal coarse-grained model. Suppose that the power law
xponent 𝛼 = 𝑑 + 2𝑠 ∈ (𝑑, 𝑑 + 2) for some 𝑠 ∈ (0, 1). By (5.16) we have

𝜙̄(𝐱𝑖) =
1
𝑣𝑐

𝑁
∑

𝑗=1
𝐽 (𝐱𝑖 − 𝐱𝑗 )𝜖

𝑝
𝑖 +

1
𝑣𝑐

𝑁
∑

𝑗=1
𝐽 (𝐱𝑖 − 𝐱𝑗 )(𝜖

𝑝
𝑗 − 𝜖𝑝𝑖 )

≈ 𝜅𝐷(𝐱𝑖)𝜖
𝑝
∗ 𝜌̄(𝐱𝑖) +

𝛬𝛼𝜖
𝑝
∗

𝑣𝑐 ∫𝐷
𝜌̄(𝐲) − 𝜌̄(𝐱𝑖)
|𝐲 − 𝐱𝑖|𝑑+2𝑠

𝑑𝐲,

(5.20)

here

𝜅𝐷(𝐱) =
𝑁
∑

𝑗=1
𝐽 (𝐱𝑗 − 𝐱) ≈

∑

𝐱𝑗∈𝐷∩𝜉𝑐Z𝑑

𝐽 (𝐱𝑗 − 𝐱),

nd the integral in (5.20)2 is conditionally integrable over a bounded domain and should be interpreted in the sense of ‘‘Principal
alue’’ (P.V.). We recall the definition of fractional Laplace operators (see Appendix A). Upon smoothly extending 𝜌̄(𝐱) to R𝑑 by
ero, we rewrite (5.20) as (𝛬′

𝛼 = 𝛬𝛼∕𝑣𝑐𝐶(𝑑, 𝑠))

𝜙̄(𝐱) = 𝜖𝑝∗
[

𝜅𝐷(𝐱)𝜌̄(𝐱) − 𝛬′
𝛼(−𝛥)

𝑠𝜌̄(𝐱)
]

, (5.21)

and the average interaction energy is identified as

⟨𝐻 int
⟩[𝜌̄] =

𝑣𝑐 (𝜖
𝑝
∗)2

2

[

∫R𝑑
𝜅𝐷(𝐱)𝜌̄2(𝐱)𝑑𝐱 − 𝛬′

𝛼 ∫R𝑑
𝜌̄(𝐱)(−𝛥)𝑠𝜌̄(𝐱)𝑑𝐱

]

. (5.22)

Therefore, the Euler–Lagrange’s equation associated with the variational problem (5.15), or equivalently, the continuum field
equations corresponding to (5.11) can be written as

⎧

⎪

⎨

⎪

⎩

𝑣𝑐 𝜌̄ = 𝜔(
𝜎̄ − 𝜙̄
𝜎𝑌

, 𝑇̂ ),

𝜙̄ = 𝜖𝑝∗𝜅𝐷(𝐱)𝜌̄(𝐱) − 𝜖𝑝∗𝛬
′
𝛼(−𝛥)

𝑠𝜌̄(𝐱).
(5.23)

From (4.13), we recognize that (5.23)1 defines a monotonic map

𝜎̄ − 𝜙̄
𝜎𝑌

↦ 𝜌̄,

hich can be inverted, giving rise to the inverse function:
𝜎̄ − 𝜙̄
𝜎𝑌

= 𝑚(𝜌̄). (5.24)

ere, we omit the 𝑇̂ -dependence for brevity and emphasize that the function 𝑚 ∶ R → R is analytic, independent of the domain 𝐷,
nd monotonically increases from 𝑚(0) = 0 to 𝑚(𝜌̄) → 1 as 𝜌̄ → +∞ (Cf. (4.13)). Inserting (5.24) into (5.23)2 we obtain

−𝜖𝑝∗𝛬′
𝛼(−𝛥)

𝑠𝜌̄ + 𝜖𝑝∗𝜅𝐷(𝐱)𝜌̄
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝜙̄, arising from nonlocal interactions

+𝜎𝑌𝑚(𝜌̄) = 𝜎̄ in 𝐷,
(5.25)

hich is equivalent to the outer minimization problem in (5.15). That is, the following variational problem:

min
𝜌̄

𝛹⋆[𝜌̄, 𝜙̄; 𝜎̄, 𝛽] = min
𝜌̄

{

⟨𝐻 int
⟩[𝜌̄] + 𝑣𝑐𝜖

𝑝
∗ ∫𝐷

(𝜎𝑌𝑀(𝜌̄) − 𝜎̄𝜌̄)𝑑𝐱
}

, (5.26)

here the function 𝑀 ∶ R → R is an anti-derivative of 𝑚 ∶ R → R, i.e., 𝑑𝑀(𝜌̄)∕𝑑𝜌̄ = 𝑚(𝜌̄).
Size effect analysis. We now analyze the effects of nonlocal interaction, particularly on the size-dependent flow stress. We now

onsider the flow stress as determined by (5.23) or (5.26). As discussed in Section 4, the flow stress can be identified either by
ertain threshold plastic strain or macroscopic shear modulus. For instance, we choose threshold value (denoted by 𝜖𝑝th) of average
lastic strain of the entire sample as the criterion for identifying the flow stress, i.e., 𝜎̄𝐹 is such that the solution to (5.23) or (5.26)
atisfies that

1
|𝐷|

∫𝐷
𝜖𝑝∗ 𝜌̄(𝐱) = 𝜖𝑝th. (5.27)

uppose that the size of 𝐷 is of order one (∼ 1) and the threshold plastic strain distribution, as a solution to (5.23) or (5.26), is
enoted by 𝜌̄∗(𝐱). By (5.24), we find that the flow stress for the body 𝐷 is given by

𝜎̄𝐹 = 1
|𝐷|

∫𝐷

[

𝜎𝑌𝑚(𝜌̄∗) + 𝜙̄[𝜌̄∗]
]

, (5.28)

here 1
|𝐷|

∫𝐷 𝑚(𝜌̄∗) ∼ 1. For a body of different size, i.e., we consider a transformation of the body:

(5.29)
15

𝐷 → 𝐷𝜆 = 𝜆𝐷 = {𝐲 ∶ 𝐲 = 𝜆𝐱, 𝐱 ∈ 𝐷}.
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Fig. 6. Normalized flow stress for different size scale parameters 𝜆 (log–log plot). For plotting, the size scale parameter 𝜆 in (5.33) is modified as (𝑠𝜆) to improve
the visibility of different plots in the figure. For simplicity, the constant of proportionality in (5.33) is chosen as unity.

To keep consistency with (5.27), we anticipate that the threshold plastic strain distribution would transform as

𝜌̄∗(𝐱) → 𝜌̄∗𝜆(𝐲) = 𝜌̄∗(𝐲∕𝜆) = 𝜌̄∗(𝐱) ∀ 𝐲 ∈ 𝐷𝜆. (5.30)

From the discussion in Appendix, the conjugate stress shall transform as

𝜙̄[𝜌̄∗](𝐱) → 𝜙̄𝜆[𝜌̄∗𝜆](𝐲) = 𝜆−2𝑠𝜙̄[𝜌̄∗](𝐲∕𝜆) = 𝜆−2𝑠𝜙̄[𝜌̄∗](𝐱). (5.31)

From (5.25) and (5.28) we conclude that the flow stress should transform as

𝜎̄𝐹 → 𝜎̄𝜆𝐹 = 1
|𝐷𝜆| ∫𝐷𝜆

[

𝜎𝑌𝑚(𝜌̄∗𝜆) + 𝜙̄𝜆[𝜌̄∗𝜆]
]

= 𝜆𝑑

|𝐷𝜆| ∫𝐷

[

𝜎𝑌𝑚(𝜌̄∗) + 𝜆−2𝑠𝜙̄[𝜌̄∗]
]

= 1
|𝐷|

∫𝐷

[

𝜎𝑌𝑚(𝜌̄∗) + 𝜆−2𝑠𝜙̄[𝜌̄∗]
]

.
(5.32)

At a macroscopic scale when 𝜆 ≫ 1, (5.32) implies that the flow stress is given by

𝜎̄∞𝐹 = 𝜎𝑌
1
|𝐷|

∫𝐷
𝑚(𝜌̄∗) ≈ 𝜎𝑌 .

Inserting the above equation into (5.32), we have

𝜎̄𝜆𝐹 − 𝜎̄∞𝐹
𝜎̄∞𝐹

∝ 𝜆−2𝑠. (5.33)

Fig. 6 shows the normalized flow stress (𝜎̄𝜆𝐹 ∕𝜎𝑌 ) with non-local interactions as the size scale parameter 𝜆 is varied. We observe
that the relative change in the flow stress decays with the size scale parameter 𝜆 as a power law, and it asymptotically converges
to the flow stress for the non-interaction case (𝜎𝑌 ) as 𝜆 → ∞. The variation in flow stress is higher for smaller sizes (i.e. small 𝜆).
This indicates that the size effect is more dominant at smaller length scales, as observed in the experiments.

The higher flow stress for a smaller size scale (i.e. smaller 𝜆) is a consequence of non-local interactions among the plastic strains,
i.e., the nonlocal interaction energy (5.22) (Cf. (B.7)):

⟨𝐻 𝑖𝑛𝑡[𝜖𝑝]⟩ ∝ ∫𝐷 ∫𝐷
𝜖𝑝(𝐱)𝜖𝑝(𝐲)
|𝐱 − 𝐲|𝑑+2𝑠

𝑑𝐱 𝑑𝐲. (5.34)

We recall that in Dahlberg and Ortiz (2019) the non-local fractional plastic strain-gradient contribution 𝛹𝑔 to the free energy is
prescribed as:

𝛹𝑔(𝜖𝑝) ∝
|𝜖𝑝(𝐱) − 𝜖𝑝(𝐲)|𝑛+1

𝑑𝐱 𝑑𝐲. (5.35)
16

∫𝐷 ∫𝐷 |𝐱 − 𝐲|𝑑+𝑠(𝑛+1)



Journal of the Mechanics and Physics of Solids 191 (2024) 105747P. Khandagale et al.

t

I

w

I

If the non-local hardening exponent 𝑛 = 1, the two energy forms in (5.34)–(5.35) admit the same scaling with respect to the
ransformation 𝐷 → 𝐷𝜆 = 𝜆𝐷 and 𝜖𝑝 → 𝜖𝑝𝜆(𝐲) = 𝜖𝑝(𝐲∕𝜆):

(⟨𝐻 𝑖𝑛𝑡[𝜖𝑝]⟩, 𝛹𝑔(𝜖𝑝)) → 𝜆𝑑−2𝑠(⟨𝐻 𝑖𝑛𝑡[𝜖𝑝]⟩, 𝛹𝑔(𝜖𝑝)).

Therefore, the two models would yield the same scaling law (5.33) for the size-dependent flow stress. In present work, we provide a
plausible microscopic origin for the exponent 𝑠 from the long-range nonlocal power-law interactions among the plastically deforming
microscopic units. Thus, in a nutshell, the emergent fractional size scaling in plasticity at the macroscale is dictated by the non-local
interactions among the plastically deforming microscopic units.

5.5. Screening long-range interaction

If 𝛼 = 𝑑 − 2𝑠 < 𝑑 for some 𝑠 > 0, we identify (5.3)2 as a negative fractional operator (see Appendix B):

𝜙̄(𝐱𝑖) =
1
𝑣𝑐

𝑁
∑

𝑗=1
𝐽 (𝐱𝑖 − 𝐱𝑗 )𝜖

𝑝
𝑗 ≈

𝜖𝑝∗𝛬𝛼
𝑣𝑐 ∫𝐷

𝜌̄(𝐲)
|𝐲 − 𝐱𝑖|𝑑−2𝑠

𝑑𝐲 =
𝜖𝑝∗𝛬𝛼

𝑣𝑐𝐵(𝑑, 𝑠)
(−𝛥)−𝑠𝜌̄(𝐱𝑖). (5.36)

n addition, the average interaction energy is identified as

⟨𝐻 int
⟩[𝜌̄] =

𝛬𝛼(𝜖
𝑝
∗)2

2𝐵(𝑑, 𝑠) ∫R𝑑
𝜌̄(𝐱)(−𝛥)−𝑠𝜌̄(𝐱)𝑑𝐱. (5.37)

Therefore, the Euler–Lagrange’s equation associated with the variational problem (5.15), or equivalently, the continuum field
equations corresponding to (5.11) can be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑐 𝜌̄ = 𝜔(
𝜎̄ − 𝜙̄
𝜎𝑌

, 𝑇̂ ),

𝜙̄ =
(𝜖𝑝∗)2𝛬𝛼
𝑣𝑐𝐵(𝑑, 𝑠)

(−𝛥)−𝑠𝜌̄ ⟺ −𝛥𝑠𝜙̄ =
(𝜖𝑝∗)2𝛬𝛼
𝑣𝑐𝐵(𝑑, 𝑠)

𝜌̄.
(5.38)

Screening effect analysis. We now analyze the implications of (5.38). Inserting (5.38)2 into (5.38)1, we obtain (𝑙2𝑠 =
𝜎𝑌 𝑣2𝑐𝐵(𝑑, 𝑠)∕(𝜖

𝑝
∗)2𝛬𝛼 and 𝛼 = 𝑑 − 2𝑠)

−𝑙2𝑠𝛥𝑠𝜙̄ = 𝜎𝑌 𝜔(
𝜎̄ − 𝜙̄
𝜎𝑌

, 𝑇̂ ) in 𝐷, (5.39)

hich is again equivalent to the outer minimization problem in (5.15) or the following variational problem:

min
𝜌̄

𝛹⋆[𝜌̄, 𝜙̄; 𝜎̄, 𝛽] = min
𝜌̄

{

⟨𝐻 int
⟩[𝜌̄] + 𝑣𝑐𝜖

𝑝
∗ ∫𝐷

(𝜎𝑌𝑀(𝜌̄) − 𝜎̄𝜌̄)𝑑𝐱
}

. (5.40)

n particular, as 𝑠 → 1− we have

𝜙̄(𝐱) = lim
𝑠→1−

(𝜖𝑝∗)2𝛬𝛼
𝑣𝑐𝐵(𝑑, 𝑠)

(−𝛥)−𝑠𝜌̄(𝐱) ∝
{

∫R𝑑
𝜌̄(𝐲)

|𝐱−𝐲|𝑑−2
𝑑𝐲 if 𝑑 ≠ 2,

∫R2 𝜌̄(𝐲) log |𝐱 − 𝐲|𝑑𝐲 if 𝑑 = 2,
(5.41)

and rewrite (5.39) as

−𝑙2𝛥𝜙̄ = 𝜎𝑌 𝜔(
𝜎̄ − 𝜙̄
𝜎𝑌

, 𝑇̂ ) in 𝐷. (5.42)

Since 𝜎̂ ↦ 𝜔(𝜎̂, 𝑇̂ ) is monotonically increasing, the above equation implies a screening or boundary-layer feature in the sense that 𝜙̄
is almost uniform and equal to 𝜎̄ in the interior of the body 𝐷 except for a boundary layer of thickness ∼ 𝑙 close to the surface 𝜕𝐷.
Such a solution implies that 𝜌̄ = 0 (i.e., plastic strain 𝜖𝑝 = 0) except in the boundary layer. In other words, the ‘‘strong’’ long-range
repulsive interaction implies plastic strains can only be generated within a boundary layer of thickness ∼ 𝑙.

6. Concluding remarks

We briefly take stock of what we have accomplished, and perhaps equally important, what has been left unsaid. Starting with
a rather bare-bones microscopic picture of interacting material units that yield at slightly different stages, we show that statistical
mechanics provides an effective coarse-graining strategy to emerge with a macroscopic continuum descriptor. The most significant
novelty of our work is that we show the precise microscopic interaction conditions that will lead to the various flavors of plasticity
theories; be it classical plasticity or a fractional strain gradient plasticity. To our knowledge, our work is the first to infer an emergent
continuum fractional type theory for plasticity by invoking statistical mechanics. Finally, our work provides a microscopic connection
to the experimentally observed size-effects.

What we do not do (or are unable to do) is to connect our work directly with dislocations. In that sense, our modeling approach
is no less phenomenological than continuum strain gradient plasticity (or the fractional version by Dahlberg and Ortiz). The
17

mathematical problem underpinning the coarse-graining of dislocation (along the lines of what we have done here) is formidable.
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Aside from bridging this gap, the developed theory can be further extended to explicitly account for time and rate dependency
using the principles of non-equilibrium statistical mechanics (Leadbetter et al., 2023; Huang et al., 2022; Kulkarni, 2023). Finally,
another exciting future direction is to perform an in-depth study of "plastons" introduced in this work to be the fundamental carrier
of plasticity in the material. For example, investigating the laws that govern the plastons would possibly allow us to use them to
alternately model time-dependent plastic flow using frameworks such as non-equilibrium statistical mechanics.

We note that the key results we derived in the interaction case, such as the derivation of fractional nonlocal continuum equations
nd the size effect analysis, are based on the energy function 𝛹 in (5.15) that we constructed. This construction mainly depends on
he analytical response function of the system for known loading; in this work, we derived (5.9) as the macroscopic plastic strain
esponse to the applied stress 𝜎̄, mean field of interaction (𝜙̄), and temperature 𝑇 using statistical mechanics. We note that the

procedure outlined in this work can be extended to derive the fractional nonlocal continuum equations and the size effect analysis
for other fields, such as electrostatics. First, one has to arrive at the final response function of the system in an analytical form
for known loading and mean field of interaction (similar to (5.9) in this work) using any techniques, such as statistical mechanics.
Then, the derivation of fractional nonlocal continuum equations and the size effect analysis would follow from the procedure we
presented in Section 5. We note that our choice of statistical mechanics, in particular, allowed us to introduce temperature as the
key parameter in studying plasticity.
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Appendix A. Fractional Laplacians

Let 𝑢 ∶ R𝑑 → R be a smooth function with all of its derivatives converging to zero at infinity (more precisely, a tempered
distribution). For 𝑠 ∈ (0, 1), the positive and negative fractional Laplace operators are defined as Di Nezza et al. (2012)

(−𝛥)𝑠𝑢(𝐱) = 𝐶(𝑑, 𝑠)P.V.∫R𝑑

𝑢(𝐱) − 𝑢(𝐲)
|𝐱 − 𝐲|𝑑+2𝑠

𝑑𝐲,

(−𝛥)−𝑠𝑢(𝐱) = 𝐵(𝑑, 𝑠)∫R𝑑

𝑢(𝐲)
|𝐱 − 𝐲|𝑑−2𝑠

𝑑𝐲,
(A.1)

where the principal value and constants 𝐶(𝑑, 𝑠) and 𝐵(𝑑, 𝑠) are defined as

P.V.∫R𝑑

𝑢(𝐱) − 𝑢(𝐲)
|𝐱 − 𝐲|𝑑+2𝑠

𝑑𝐲 = lim
𝜀→0∫R𝑑⧵𝐵𝜀(𝐱)

𝑢(𝐱) − 𝑢(𝐲)
|𝐱 − 𝐲|𝑑+2𝑠

𝑑𝐲,

𝐶(𝑑, 𝑠) =
(

∫R𝑑

1 − cos 𝑧1
|𝐳|𝑑+2𝑠

𝑑𝐳
)−1

, 𝐵(𝑑, 𝑠) =
(

∫R𝑑

cos 𝑧1
|𝐳|𝑑−2𝑠

𝑑𝐳
)−1

.
(A.2)

Fractional Laplace operators enjoy some neat properties as the usual Laplacian −𝛥 or inverse Laplacian −𝛥−1. In particular, we have

lim
𝑠→1−

(−𝛥)𝑠𝑢(𝐱) = −𝛥𝑢(𝐱), lim
𝑠→0+

(−𝛥)𝑠𝑢(𝐱) = 𝑢(𝐱),

lim
𝑠→1−

(−𝛥)−𝑠𝑢(𝐱) = −𝛥−1𝑢(𝐱), lim
𝑠→0+

(−𝛥)−𝑠𝑢(𝐱) = 𝑢(𝐱).

Further, we have

(−𝛥)−𝑠(−𝛥)𝑠𝑢(𝐱) = (−𝛥)𝑠(−𝛥)−𝑠𝑢(𝐱) = 𝑢(𝐱) ∀ 𝑠 ∈ (0, 1). (A.3)
18
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T

a

To see this, we notice that, upon a change of variables 𝐲 → 𝐳 = 𝐲 − 𝐱 or 𝐲 → 𝐳 = 𝐱 − 𝐲,

∫R𝑑

𝑢(𝐱) − 𝑢(𝐲)
|𝐱 − 𝐲|𝑑+2𝑠

𝑑𝐲 = ∫R𝑑

𝑢(𝐱) − 𝑢(𝐱 + 𝐳)
|𝐳|𝑑+2𝑠

𝑑𝐳 = ∫R𝑑

𝑢(𝐱) − 𝑢(𝐱 − 𝐳)
|𝐳|𝑑+2𝑠

𝑑𝐳.

Therefore, we can alternatively define positive fractional Laplace operators as

(−𝛥)𝑠𝑢(𝐱) = −
𝐶(𝑑, 𝑠)

2 ∫R𝑑

𝑢(𝐱 + 𝐳) + 𝑢(𝐱 − 𝐳) − 2𝑢(𝐱)
|𝐳|𝑑+2𝑠

𝑑𝐳. (A.4)

By Fourier transformation, the above equation implies

 [(−𝛥)𝑠𝑢] = −
𝐶(𝑑, 𝑠)

2 ∫R𝑑

 [𝑢(𝐱 + 𝐳) + 𝑢(𝐱 − 𝐳) − 2𝑢(𝐱)]
|𝐳|𝑑+2𝑠

𝑑𝐳

= 𝐶(𝑑, 𝑠)
[

∫R𝑑

1 − cos 𝐤 ⋅ 𝐳
|𝐳|𝑑+2𝑠

𝑑𝐳
]

 [𝑢]

= |𝐤|2𝑠 [𝑢].

(A.5)

Similarly, we consider Fourier transformation of (A.1)2 and obtain

 [(−𝛥)−𝑠𝑢] =
𝐵(𝑑, 𝑠)

2 ∫R𝑑

 [𝑢(𝐱 + 𝐳) + 𝑢(𝐱 − 𝐳)]
|𝐳|𝑑−2𝑠

𝑑𝐳

= 𝐵(𝑑, 𝑠)
[

∫R𝑑

cos𝐤 ⋅ 𝐳
|𝐳|𝑑−2𝑠

𝑑𝐳
]

 [𝑢]

= |𝐤|−2𝑠 [𝑢].

(A.6)

By (A.5) and (A.6), we have

 [(−𝛥)−𝑠(−𝛥)𝑠𝑢] = |𝐤|−2𝑠 [(−𝛥)𝑠𝑢] =  [𝑢],

which completes the proof of (A.3). For 𝑠1, 𝑠2 > 0,

(−𝛥)−𝑠1 (−𝛥)−𝑠2𝑢 = (−𝛥)−(𝑠1+𝑠2)𝑢,

since

 [(−𝛥)−𝑠1 (−𝛥)−𝑠2𝑢] = |𝐤|−2𝑠1 [(−𝛥)−𝑠2𝑢] = |𝐤|−2(𝑠1+𝑠2) [𝑢]. (A.7)

In addition, positive fractional Laplacian (−𝛥)𝑘+𝑠 for some positive integer 𝑘 and 𝑠 ∈ (0, 1) can be defined as

(−𝛥)𝑘+𝑠𝑢 = (−𝛥)𝑠(−𝛥)𝑘𝑢 = (−𝛥)𝑘(−𝛥)𝑠𝑢.

Fractional Laplacian operators are self-adjoint and positive definite in the sense that

∫R𝑑
𝑢(−𝛥)𝑠𝑢 = ∫R𝑑

|(−𝛥)𝑠∕2𝑢|2 =
𝐶(𝑑, 𝑠)

2 ∫R𝑑 ∫R𝑑

|𝑢(𝐱) − 𝑢(𝐲)|2

|𝐱 − 𝐲|𝑑+2𝑠
𝑑𝐲𝑑𝐱.

o see this, by Plancherel’s formula we have

∫R𝑑
𝑢(−𝛥)𝑠𝑢𝑑𝐱 = 𝐶(𝑑, 𝑠)∫R𝑑

𝑢(𝐱)∫R𝑑

𝑢(𝐱) − 𝑢(𝐲)
|𝐱 − 𝐲|𝑑+2𝑠

𝑑𝐲𝑑𝐱

= ∫R𝑑
 [𝑢] [(−𝛥)𝑠𝑢]𝑑𝐤 = ∫R𝑑

|𝐤|2𝑠| [𝑢]|2𝑑𝐤 = ∫R𝑑

|

|

|

|𝐤|2
𝑠
2  [𝑢]||

|

2
𝑑𝐤

= ∫R𝑑
|(−𝛥)𝑠∕2𝑢|2𝑑𝐱,

(A.8)

nd

𝐶(𝑑, 𝑠)∫R𝑑 ∫R𝑑

|𝑢(𝐱) − 𝑢(𝐲)|2

|𝐱 − 𝐲|𝑑+2𝑠
𝑑𝐲𝑑𝐱 = 𝐶(𝑑, 𝑠)∫R𝑑 ∫R𝑑

1
|𝐳|𝑑+2𝑠

(

𝑢(𝐳 + 𝐱) − 𝑢(𝐱)
)2

𝑑𝐱𝑑𝐳

= 𝐶(𝑑, 𝑠)∫R𝑑

1
|𝐳|𝑑+2𝑠 ∫R𝑑

(

 [𝑢(𝐳 + 𝐱) − 𝑢(𝐱)](𝐤)
)2

𝑑𝐤𝑑𝐳

= 2𝐶(𝑑, 𝑠)∫R𝑑 ∫R𝑑

1 − cos 𝐤 ⋅ 𝐳
|𝐳|𝑑+2𝑠

(

 [𝑢]
)2

𝑑𝐳𝑑𝐤

= 2∫ |𝐤|2𝑠
(

 [𝑢]
)2

𝑑𝐤 = 2∫ |(−𝛥)𝑠∕2𝑢|2𝑑𝐱.

(A.9)
19
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Appendix B. Scaling of interaction energy and induced field

Let 𝐷 ⊂ R𝑑 be regular bounded domain of lengthscale ∼ 1, 𝜉𝑐 ≪ 1 a fixed microscopic lengthscale, and 𝑁 the number of
gridpoints in 𝐷 ∩ 𝜉𝑐Z𝑑 . For a smooth compactly supported function 𝑢 ∶ R𝑑 → R, let

𝑆𝐷[𝑢] =
1
2

𝑁
∑

𝑖,𝑗=1
𝐽 (𝐱𝑖 − 𝐱𝑗 )𝑢(𝐱𝑖)𝑢(𝐱𝑗 ) =

𝑣𝑐
2

𝑁
∑

𝑖=1
𝑢(𝐱𝑖)𝜙𝐷(𝐱𝑖), (B.1)

be a double sum arising from interactions in a discrete model and

𝜙𝐷(𝐱) =
1
𝑣𝑐

𝑁
∑

𝑗=1
𝐽 (𝐱 − 𝐱𝑗 )𝑢(𝐱𝑗 ), (B.2)

be the single sum that defines the conjugate of 𝑢(𝐱𝑖) in the model. Here, the interaction potential is specified in (5.16), i.e., a
two-piece function with trivial local interaction and power-law long-range interaction:

𝐽 (𝐱) =
{

𝐽core(𝐱) ≡ 0 if |𝐱| < 𝜉𝑐 ,
𝛬𝛼
|𝐱|𝛼 if |𝐱| ≥ 𝜉𝑐 .

(B.3)

We are interested in how 𝑆𝐷[𝑢] and 𝜙𝐷(𝐱) transform with respect to the following transformation:

𝐷 → 𝐷𝜆 = 𝜆𝐷 = {𝐲 ∶ 𝐲 = 𝜆𝐱, 𝐱 ∈ 𝐷},

𝑢 → 𝑢𝜆(𝐲) = 𝑢(𝐲∕𝜆) = 𝑢(𝐱).
(B.4)

1. Local interaction. If 𝛼 > 𝑑+2, the value of 1∕𝑟𝛼 decays fast as 𝑟 increases. First, we focus on the single sum (B.2). If 𝑢 ∶ 𝐷 → R
is bounded, i.e., |𝑢| ≤ 𝑀 on 𝐷 for some 𝑀 > 0, the series (B.2) converges absolutely15 for a fixed 𝜉𝑐 and as 𝐷 → R𝑑 . In other
words, the value of the sum 𝜙𝐷(𝐱) is predominantly determined by the ‘‘nearest-neighbor’’ interactions. Let 𝑖 denote pairs
of nearest-neighbors. Then (B.1) and (B.2) may be approximated by

𝜙𝐷(𝐱𝑖) ≈
1
𝑣𝑐

∑

𝐱𝑗∈𝑖

𝐽 (𝐱𝑖 − 𝐱𝑗 )𝑢(𝐱𝑗 ) ≈
𝑞𝛬𝛼
𝜉𝛼𝑐 𝑣𝑐

𝑢(𝐱𝑖),

𝑆𝐷[𝑢] =
𝑣𝑐
2

∑

𝐱𝑖∈𝐷∩𝜉𝑐Z𝑑

𝜙𝐷(𝐱𝑖)𝑢(𝐱𝑗 )

⟶
1
2 ∫𝐷

𝜙𝐷(𝐱)𝑢(𝐱)𝑑𝐱 =
𝑞𝛬𝛼
2𝜉𝛼𝑐 𝑣𝑐 ∫𝐷

𝑢2(𝐱)𝑑𝐱,

(B.5)

where 𝑞 is the number of nearest neighbors for an interior grid point, and the last line follows from the assumption that
𝑢 = 𝑢(𝐱) does not vary significantly over the lengthscale 𝜉𝑐 . Consequently,

𝑆𝐷𝜆
[𝑢𝜆] ≈

𝑞𝛬𝛼
2

∑

𝐲𝑖∈𝐷𝜆∩𝜉𝑐Z𝑑

𝑢2𝜆(𝐲𝑖)
𝜉𝛼𝑐

=
𝑞𝛬𝛼
2

∑

𝐱𝑖∈𝐷∩ 𝜉𝑐
𝜆 Z𝑑

𝑢2(𝐱𝑖)
𝜉𝛼𝑐

→
𝑞𝛬𝛼𝜆𝑑

2𝜉𝛼𝑐 𝑣𝑐 ∫𝐷
𝑢2(𝐱)𝑑𝐱

≈ 𝜆𝑑𝑆𝐷[𝑢].

(B.6)

2. Nonlocal interaction. If 𝛼 = 𝑑 + 2𝑠 ∈ (𝑑, 𝑑 + 2) for some 𝑠 ∈ (0, 1), another approximation of (B.1) may be achieved by
directly applying the Euler–Maclaurin’s formula:

𝑆𝐷[𝑢] =
𝛬𝛼
2

∑

𝐱𝑖∈𝐷∩𝜉𝑐Z𝑑

∑

𝐱𝑗∈𝐷∩𝜉𝑐Z𝑑

𝑢(𝐱𝑖)𝑢(𝐱𝑗 )
|𝐱𝑖 − 𝐱𝑗 |𝛼

→
𝛬𝛼

2𝑣2𝑐 ∫𝐷 ∫(𝐷−𝐱)⧵𝐵𝜉𝑐

𝑢(𝐱)𝑢(𝐱 + 𝐳)
|𝐳|𝛼

𝑑𝐳𝑑𝐱

→
1
2𝑣2𝑐 ∫R𝑑 ∫R𝑑

𝑢(𝐱)𝑢(𝐱 + 𝐳)𝐽 (𝐳)𝑑𝐳𝑑𝐱.

(B.7)

15 Convergence of the single sum (B.2) requires only 𝛼 > 𝑑.
20
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For the transformed sum, we have

𝑆𝐷𝜆
[𝑢𝜆] =

𝛬𝛼
2

∑

𝐲𝑖∈𝐷𝜆∩𝜉𝑐Z𝑑

∑

𝐲𝑗∈𝐷𝜆∩𝜉𝑐Z𝑑

𝑢𝜆(𝐲𝑖)𝑢𝜆(𝐲𝑗 )
|𝐲𝑖 − 𝐲𝑗 |𝛼

=
𝛬𝛼
2

∑

𝐱𝑖∈𝐷∩ 𝜉𝑐
𝜆 Z𝑑

∑

𝐱𝑗∈𝐷∩ 𝜉𝑐
𝜆 Z𝑑

𝑢(𝐱𝑖)𝑢(𝐱𝑗 )
𝜆𝛼|𝐱𝑖 − 𝐱𝑗 |𝛼

→
𝜆2𝑑−𝛼

2𝑣2𝑐 ∫R𝑑 ∫R𝑑
𝑢(𝐱)𝑢(𝐱 + 𝐳)𝐽 (𝐳)𝑑𝐳𝑑𝐱

≈ 𝜆𝑑−2𝑠𝑆𝐷[𝑢],

(B.8)

where in the last equation we have used that the core interaction potential 𝐽core ≡ 0. Meanwhile, from the definition we have

𝑆𝐷[𝑢] =
𝑣𝑐
2

∑

𝐱𝑖∈𝐷∩𝜉𝑐Z𝑑

𝜙𝐷(𝐱𝑖)𝑢(𝐱𝑗 ) →
1
2 ∫𝐷

𝜙𝐷(𝐱)𝑢(𝐱)𝑑𝐱,

𝑆𝐷𝜆
[𝑢𝜆] =

𝑣𝑐
2

∑

𝐲𝑖∈𝐷𝜆∩𝜉𝑐Z𝑑

𝜙𝐷𝜆
(𝐲𝑖)𝑢𝜆(𝐲𝑗 ) =

𝑣𝑐
2

∑

𝐱𝑖∈𝐷∩ 𝜉𝑐
𝜆 Z𝑑

𝜙𝐷𝜆
(𝜆𝐱𝑖)𝑢(𝐱𝑗 ),

→
𝜆𝑑

2 ∫𝐷
𝜙𝐷𝜆

(𝜆𝐱)𝑢(𝐱)𝑑𝐱.

(B.9)

Comparing (B.8) and (B.9), for consistency we find that the conjugate should transform as

𝜙𝐷(𝐱) → 𝜙𝐷𝜆
(𝐲) = 𝜆−2𝑠𝜙𝐷(𝐲∕𝜆) = 𝜆−2𝑠𝜙𝐷(𝐱). (B.10)

3. Long-range interaction. If 𝛼 = 𝑑 − 2𝑠 ∈ (𝑑 − 2, 𝑑) for some 𝑠 ∈ (0, 1), the double sum (B.1) diverges if 𝐷 → R𝑑

(i.e., size(𝐷)∕𝜉𝑐 → +∞) for a general function 𝑢 ∶ R𝑑 → R. To have a meaningful result, we assume the state function 𝑢(𝐱)
decays fast enough such that the conjugate 𝜙𝐷(𝐱) is well-defined and can be approximated by a negative fractional Laplace
operator (Cf. (A.1)2)

𝜙𝐷(𝐱) =
1
𝑣𝑐

𝑁
∑

𝑗=1

𝛬𝛼𝑢(𝐱𝑗 )

|𝐱 − 𝐱𝑗 |𝑑−2𝑠
→

𝛬𝛼

𝑣2𝑐 ∫R𝑑

𝑢(𝐲)
|𝐱 − 𝐲|𝑑−2𝑠

𝑑𝐲 =
𝛬𝛼

𝑣2𝑐𝐵(𝑑, 𝑠)
(−𝛥)−𝑠𝑢(𝐱). (B.11)

Therefore, the double sum (B.1) may be approximated by:

𝑆𝐷[𝑢] =
𝛬𝛼

𝑣2𝑐𝐵(𝑑, 𝑠) ∫R𝑑
𝑢(𝐱)(−𝛥)−𝑠𝑢(𝐱)𝑑𝐱. (B.12)

Under the transformation (B.4), we have

𝑆𝐷[𝑢] → 𝑆𝐷𝜆
[𝑢𝜆] = 𝜆𝑑+2𝑠𝑆𝐷[𝑢],

𝜙𝐷(𝐱) → 𝜙𝐷𝜆
(𝐲) = 𝜆2𝑠𝜙𝐷(𝐲∕𝜆) = 𝜆2𝑠𝜙𝐷(𝐱).

(B.13)

Appendix C. Strain hardening/softening effects

To account for strain hardening effects, we may consider the activation energy of form (2.3) with 𝑐1 > 0. Upon repeating the
calculations in Section 4, we have

𝐹 = 𝐹 el + 𝐹 pl,

𝐹 el(𝛽,𝑁, 𝜎̄) = −𝑉 𝜎̄2

2𝐺
− 𝑁

2
𝑘𝐵𝑇 log 𝑇 + 𝑐𝑜𝑛𝑠𝑡,

𝐹 pl = −𝑘𝐵𝑇𝑁 log(𝑍𝑝
1 )ℎ,

(C.1)

where the partition function associated with plastic strain for strain hardening or softening case, (𝑍𝑝
1 )ℎ, is given by

(𝑍𝑝
1 )ℎ =

∑

𝑗∈Z
𝑒−𝑣𝑐𝛽𝜖

𝑝
∗(|𝑗|𝜎𝑌 +𝑐1𝑗2𝜎𝑌 −𝑗𝜎̄)

= 1 +
∞
∑

𝑒−(𝑗+𝑐1𝑗
2−𝑗𝜎̂)∕𝑇̂ +

∞
∑

𝑒−(𝑗+𝑐1𝑗
2+𝑗𝜎̂)∕𝑇̂ .

(C.2)
21
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Fig. 7. Plot of 𝐺eff

𝐺
vs 𝜎̂ for different 𝑐1 values and at a fixed temperature 𝑇 = 300 K. The independent parameters for the non-interaction model are considered

as 𝜉𝑐 = 2 nm, 𝜎𝑌 = 79 MPa, 𝜖𝑝∗ = 10−4, 𝐺 = 26 GPa and 𝑏 = 0.286 nm.

For simplicity, suppose 𝑐1 ≪ 1.16 Then the terms on the right-hand side of (C.2) may be approximated as 17

∞
∑

𝑗=1
𝑒−(𝑗+𝑐1𝑗

2−𝑗𝜎̂)∕𝑇̂ ≈
∞
∑

𝑗=1
𝑒−𝑗(1−𝜎̂)∕𝑇̂ −

𝑐1
𝑇̂

∞
∑

𝑗=1
𝑗2𝑒−𝑗(1−𝜎̂)∕𝑇̂

= 1
𝑒(1−𝜎̂)∕𝑇̂ − 1

−
𝑐1
𝑇̂

𝑒2(1−𝜎̂)∕𝑇̂ + 𝑒(1−𝜎̂)∕𝑇̂

(𝑒(1−𝜎̂)∕𝑇̂ − 1)3
,

∞
∑

𝑗=1
𝑒−(𝑗+𝑐1𝑗

2+𝑗𝜎̂)∕𝑇̂ ≈
∞
∑

𝑗=1
𝑒−𝑗(1+𝜎̂)∕𝑇̂ −

𝑐1
𝑇̂

∞
∑

𝑗=1
𝑗2𝑒−𝑗(1+𝜎̂)∕𝑇̂

= 1
𝑒(1+𝜎̂)∕𝑇̂ − 1

−
𝑐1
𝑇̂

𝑒2(1+𝜎̂)∕𝑇̂ + 𝑒(1+𝜎̂)∕𝑇̂

(𝑒(1+𝜎̂)∕𝑇̂ − 1)3
,

(C.3)

and, 𝐹 pl simplifies as,

𝐹 pl = 𝐹 pl
0 + 𝐹 pl

1 ,

𝐹 pl
0 = −𝑘𝐵𝑇𝑁 log(𝑍𝑝

1 ), 𝑍𝑝
1 = 1 + 1

𝑒(1−𝜎̂)∕𝑇̂ − 1
+ 1

𝑒(1+𝜎̂)∕𝑇̂ − 1
,

𝐹 pl
1 ∶= 𝑁

𝑐1𝑣𝑐𝜖
𝑝
∗𝜎𝑌

𝑍𝑝
1

[ 𝑒2(1−𝜎̂)∕𝑇̂ + 𝑒(1−𝜎̂)∕𝑇̂

(𝑒(1−𝜎̂)∕𝑇̂ − 1)3
+ 𝑒2(1+𝜎̂)∕𝑇̂ + 𝑒(1+𝜎̂)∕𝑇̂

(𝑒(1+𝜎̂)∕𝑇̂ − 1)3

]

.

(C.4)

Substituting (C.4) in (C.1), we obtain the total free energy 𝐹 . Using this total free energy 𝐹 and (3.9), we evaluate the effective
macroscopic shear modulus 𝐺eff . Fig. 7 shows plot of 𝐺𝑒𝑓𝑓

𝐺 vs 𝜎̂ for different 𝑐1 values and at a fixed temperature 𝑇 = 300 K. We
observe that, for a fixed applied stress 𝜎̄, the effective macroscopic shear modulus (𝐺eff ) increases with an increase in 𝑐1 value,
indicating the strain hardening effect.
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