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Soft Electromechanical
Elastomers Impervious to
Instability
Soft dielectric elastomers that can exhibit extremely large deformations under the action of
an electric field enable applications such as soft robotics, biomedical devices, and energy
harvesting among others. A key impediment in the use of dielectric elastomers is failure
through instability mechanisms or dielectric breakdown. In this work, by using a group
theory-based approach, we provide a closed-form solution to the bifurcation problem of
a paradigmatical elastomer actuator and discover an interesting result: at a critical electric
field, the elastomer becomes impervious to Treloar–Kearsley instability. This limit is
reached prior to the typical dielectric breakdown threshold. Our results thus establish a
regime of electrical and mechanical loads where the dielectric elastomer is invulnerable
to all common failure modes. [DOI: 10.1115/1.4068630]
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1 Introduction
Soft electromechanical elastomers, also known as dielectric elas-

tomers (DEs), wherein mechanical deformations can be driven by
electrical stimulus for actuation, present tremendous potential as
transducers for soft and biologically inspired robots, biomedical
devices, and energy harvesting, among other applications [1–17].
The actuation mechanism in DE is typically achieved through a
capacitor-like design where a dielectric elastomer film is sand-
wiched between two compliant electrodes: upon application of a
voltage difference across the electrodes, the electrostatic

(Coulombic) force between the electrodes due to the electrical
charges compresses the DE in the thickness direction causing—
through the Poisson effect—the DE to expand in the lateral direc-
tion [18–20].
However, because the Poisson effect is typically fairly small, DEs

typically require high voltages to induce a usable deformation. Con-
sequently, the high fields drive electromechanical failures such as
pull-in instability, electrical breakdown, and buckling instability
[21–23], which limit the performance. To increase the deformation
and delay/suppress instabilities, mechanical prestretch and prestress
are often introduced before applying voltage [7,24–26]. Other
methods to improve the performance of DE include the introduction
of mechanical constraints [21,27], using dielectric films without
electrodes [28], designing multilayer DE actuators [29], or harness-
ing instabilities for improved functionality [26,30]. A compelling
argument for the use of soft DEs is their ability to sustain large
mechanical deformation under the action of an electrical field.
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Such a feature is a necessity for applications like biomimetic robot-
ics or devices such as an adaptive eye lens. The facile deformability
and the complex nonlinear material behavior that underlies its
mechanics, also gives rise to instabilities such as wrinkling, creas-
ing, pull-in instability, Treloar–Kearsley instability, and others
[31–33]. While instabilities may be exploited to achieve interesting
actuation designs [34,35], they are more typically the failure modes
for dielectric elastomer-based devices.
We briefly highlight the two instability mechanisms relevant to

our work. For the capacitive thin film elastomer design, its thinning
progressively increases with the increasing electrical field. Once the
film reaches a critical value, thinning increases suddenly (to be
understood as a bifurcation) leading to electrical breakdown. The
Treloar–Kearsley (T–K) instability is based on a symmetric defor-
mation bifurcating into symmetry-breaking configuration beyond
a critical applied stimulus, e.g., square to rectangular or circular
to elliptical [36–44].
In this letter, we address the following question: Is it possible to

engineer a dielectric elastomer to be completely immune to instabil-
ity? We first obtain a closed-form solution to the bifurcation analy-
sis of a paradigmatic circular dielectric elastomer thin film subject to
both electrical and mechanical loading. Building on this solution,
we find that an applied electric field of a certain critical strength
completely suppresses the T–K instability.

2 Model Formulation: Variational Principle and Field
Equations
Consider a DE specimen occupying the domainΩ0 and boundary

∂Ω0 in the reference configuration, and Ω with boundary ∂Ω in the
deformed configuration. The material points in the reference and
deformed configurations are denoted by x0 and x, respectively,
and the deformation gradient is denoted by F(x0) = ∇0x consistent
with the deformation map x = x(x0); we further define J = det (F) > 0
as the Jacobian. The electric potential ϕ(x) and electric field E(x) are
related by E = −∇ϕ. The polarization field in the material is denoted
as P(x).
The total free energy of the system is formulated [45] as follows:

ψ [x, P]=
∫
Ω0

W(F, P)+
ε0
2

∫
Ω
|E|2 −

∫
∂Ωt0

t0 · x+
∫
∂Ω
ϕ(ε0E+ P) · n

(1)

where W is the free energy density per unit referential volume; the
second term is the electrostatic field energy, noting that ε0 is the per-
mittivity of free space; and the last two terms are the contributions
from the mechanical and electrical boundary conditions. ∂Ωt0 is the
part of the boundary ∂Ω0, where the traction is specified with n the
outward normal. The electric field in Eq. (1) is computed by solving
the electrostatic equation:

∇ · (ε0E+ P)=−ε0∇2ϕ+∇ · P= 0 in Ω (2)

subject to the boundary conditions that ϕ is specified at the elec-
trodes and ε0E + P( ) · n= 0 on the portion of the boundary where
there are no free charges. We note that this is an approximation
that neglects the external electric fields outside the specimen
[46,47].
The pullbacks to the reference configuration of E(x) and P(x) are

defined as follows [48,49]:

E0 = FTE, P0 = JP

and the pullback for the electric potential to be ϕ0(x0) = ϕ(x(x0)).
The dielectric elastomer is assumed to be incompressible, which

requires that J = 1, and is imposed by introducing a Lagrange mul-
tiplier p(x0). The Lagrangian for an incompressible material, written

in terms of the pullbacks, is expressed as follows:

Ψ[x, P0] =
∫
Ω0

W(F, P0) +
ε0
2

∫
Ω0

J|F−TE0|2 −
∫
∂Ωt0

t0 · x

+
∫
∂Ω0

ϕ0JF
−1(ε0F

−TE0 + P0) · n0 −
∫
Ω0

p(J − 1)

(3)

where n0 is the outward normal to ∂Ω0.
Setting the functional derivative of Ψ with respect to x(x0) to 0,

with constraint (2), we obtain the following equations that represent
mechanical equilibrium in the bulk and the boundary conditions:

∇0 · ∂W
∂F

+ Σ0 − pJF−T
( )

= 0 on Ω0 (4a)

∂W
∂F

+ Σ0 − pJF−T
( )

n0 = t0 on ∂Ωt0 (4b)

∂W
∂F

+ Σ0 − pJF−T
( )

n0 = 0 on ∂Ω0 ∖ ∂Ωt0 (4c)

We have defined Σ0 : = E0 ⊗ JF−1(ε0F−TE0 + P0) −
(ε0J/2)|E0|2F−T as the Piola–Maxwell stress tensor and T : =
∂W/∂F + Σ0 − pJF−T as the total Piola-Kirchhoff stress tensor. The
PDE and BCs in Eq. (4) define the boundary value problem that
must be solved for the equilibrium configuration.
Similarly, setting the functional derivative of Ψ with respect to

P0(x0) to 0 gives the usual local relation between the electric field
and the polarization density at a point −∂W/∂P0 = E [50].

2.1 Material Model. We assume that the energy density
W(F, P0) is additively composed of a mechanical strain energy

densityWm(F) and an electromechanical energy densityWel(F, P0).
For the mechanical term, we use an incompressible, isotropic,

hyperelastic Mooney–Rivlin model [51], which can be connected
to statistical mechanics and network elasticity [52,53]:

Wm(F) =
μ

2
I1 − 3( ) + γ I2 − 3( )[ ] (5)

where μ and γ are material parameters, and I1 = tr(FTF) and
I2 = 1

2 tr(FTF)2 − tr((FTF)2)
( )

are the invariants of F. All quan-
tities will be nondimensionalized with respect to μ.
For the electromechanical term, we use a linear isotropic dielec-

tric with P = ε0χE, where χ is the scalar dielectric susceptibility.
In Ref. [54], it was shown that the dielectric susceptibility
derived from statistical mechanics is an anisotropic function of
the deformation; however, for simplicity, we assume that χ is iso-
tropic and independent of deformation. By defining ε : = ε0(1 + χ)
to be the permittivity, we write the electromechanical energy as
follows [55]:

Wel =
1
2J

P0 · (ε − ε0)
−1P0 (6)

We note that though ε is independent of deformation, Wel

involves the deformation through the presence of J = detF
because P0 depends on F through the pullback relation.

3 Simplification of the Field Equations to an Algebraic
System
The necessary conditions for the onset of the symmetry-breaking

instability is determined through a linear bifurcation analysis on a
DE specimen subject to both mechanical loads and electrical
stimuli. We consider a disk-shaped specimen, and both the defor-
mation and electric field are assumed to be homogeneous
under the applied loads. This enables us to simplify our analysis
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for T–K and pull-in instabilities, but restricts it to situations without
buckling instabilities.
The Cartesian coordinates of material points in the reference con-

figuration are of the form x0 = (x1, x2, x3) = (R cos θ, R sin θ, x3),
where R is the radius of the disk and θ ∈ [0, 2π). The corresponding
spatial position of these material points after deformation is of the
form x = (F11x1 + F12x2, F21x1 + F22x2, F33x3), with

F =
F11 F12 0
F21 F22 0
0 0 F33

⎛
⎝

⎞
⎠ (7)

The components F13, F23, F31, and F32 are negligible because the
specimen has a thickness that is small compared to its radius.
The mechanical load is applied uniformly on the entire lateral

boundary by specifying the traction Ter = t0, with t0 = t0er and
er = ( cos θ, sin θ, 0). The top and bottom faces are traction free,
i.e., Te3 = 0. The term t0 · x in Eq. (3) reduces to
Rt0((F11x1 + F12x2) cos θ + (F21x1 + F22x2) sin θ)). The energy con-
tribution due to the applied traction can now be written as follows:

∫
∂Ωt0

t0 · x = RHt0

∫2π
0
(F11 cos

2 θ + F22 sin
2 θ + (F12 + F21) cos θ sin θ)R dθ = πR2Ht0(F11 + F22) (8)

The voltage boundary condition has the affine form ϕ = −Eext · x and is applied on the entire boundary ∂Ω, where Eext = (Eext
1 , Eext

2 , Eext
3 )

is a constant vector with the physical interpretation of a uniform applied electric field [56–58]. The internal electric field that is generated by
this boundary voltage is computed from Eq. (2) and is expressed as ∇ϕ = −Eext.
The energy due to the electric field in Eq. (3), by using Eq. (6) and under the assumption of a homogeneous deformation, is simplified as

follows:

ε

2

∫
Ω0

J|F−TEext|2 +
∫
∂Ω0

ϕ0E
ext · n0 = −πR2H

ε

2
|F−TEext|2 (9)

where we have used the prescribed affine voltage boundary conditions and the divergence theorem.
Using all the aforementioned simplified expressions, the mean free energy, in terms of components of F and Eext, can be written as

follows:

1
πR2H

ψ (F11, F12, F21, F22, F33) =
μ

2
(I − 3) + γ(II − 3)
( )

− t0(F11 + F22) −
ε

2
(F22E

ext
1 − F21E

ext
2 )2F2

33

−
ε

2
(F11E

ext
2 − F12E

ext
1 )2F2

33 −
ε

2
(Eext

3 )2

F2
33

− p F11F22F33 − F12F21F33 − 1( )
(10)

This generalizes the expression from Ref. [32], which was
restricted to out-of-plane electric fields.
To further simplify our analysis, we will determine the condition

for onset of the T–K instability in the presence of in-plane compo-
nents of the electric field in terms of principal stretches only, which
are the eigenvalue of the stretch tensorU =

�����
FTF

√
. It is the case that

prior to a critical value for bifurcation, the dielectric elastomer will
stretch uniformly in its plane, i.e., it will remain circular; thus, there
will be no shearing. Incompressibility of the dielectric requires that
det (F) = 1; that is, λ1λ2λ3 = 1. The traction BC on the top and
bottom, referring to Eq. (4c), indicates zero stress components in
the out-of-plane direction (i.e., T3); this eliminates p. We further
set the electric field components Eext

1 and Eext
2 to zero given that

the analysis herein focuses on the effect of Eext
3 on the instabilities.

It was shown in Ref. [30] that both Eext
1 and Eext

2 had minimal effect
on the T–K instability compared to Eext

3 . The mean free energy and
in-plane principal stress components T̂1 and T̂2 as defined from
Eq. (4a) are given by the algebraic system of equations as functions
of principal stretches λ1, λ2, and Ê3:

1
πR2H

ψ̂(λ1, λ2, Ê3)=
1
2

λ21+ λ22+
1

λ21λ
2
2

−3+ γ(λ−21 + λ−22 + λ21λ
2
2−3)

( )

− t̂0(λ1+ λ2)−
1
2
Ê2
3λ

2
1λ

2
2 (11)

T̂1(λ1, λ2, Ê3) : = −Ê2
3λ1λ

2
2 − λ−31 λ−22 + λ1 + γ(λ41λ

2
2 − 1)λ−31 (12a)

T̂2(λ1, λ2, Ê3) : = −Ê2
3λ

2
1λ2 − λ−21 λ−32 + λ2 + γ(λ21λ

4
2 − 1)λ−32 (12b)

where ψ̂(λ1, λ2, Ê3) : = ψ[F11, F12, F21, F22, F33]/μ, t̂0 : = t0/μ,
T̂i : = Ti/μ, i = 1, 2; and Ê3 : = Eext

3 /
����
μ/ε

√
.

For subsequent analysis, the total nominal stress will be T̂i = t̂0,
where i = 1, 2 based on the boundary condition in Eq. (4b).
Then, by eliminating to from (12a) and (12b), we obtain the follow-
ing condition:

λ1 − λ2( ) Ê2
3 − γ

( )
λ1λ2 + (1+ γ(λ21 + λ1λ2 + λ22))λ−3

1 λ−3
2 + 1

( ) = 0

(13)

In the absence of electric fields (Ê3 = 0), the aforementioned con-
dition matches Kearsley’s theoretical analysis in predicting asym-
metric deformation beyond a critical load [39].

4 Background on Singularity Theory
A bifurcation analysis of the dielectric employing singularity

theory is presented in this section. This section is adapted from
Ref. [59] with references from previous studies [60,61]. Singularity
theory is a mathematical tool that seeks to reduce a singular function
to a simple normal form from which the properties of the bifurcation
solution can be determined from a finite number of derivatives of
the singular function. We will be concerned with local bifurcation
problems of the form

f (u, κ) = 0 (14)

near a point (u0, κ0), where u represents state variables and κ is the
bifurcation parameter. Classically, (u0, κ0) is called a bifurcation
point if the number of solutions changes as κ changes in the neigh-
borhood of κ0. We consider the principal branch u bifurcating near
u0 when κ increases past κ0.
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An illustrative example of a bifurcation is the elastica problem of
buckling of a column subjected to compressive forces [62]. The
principal branch is the unbuckled state, while the buckled state is
the bifurcated branch. The T–K instability is another example of
a bifurcation problem where a Mooney–Rivlin material stretched
biaxially experiences a symmetric stretch up to a bifurcation
where the stretch becomes asymmetric leading to stable and unsta-
ble solutions [39]. In this section, will explore the former to illus-
trate the singularity theory, and the latter will be analyzed in the
subsequent sections.
The governing equation for the elastica problem is given as

follows:

EIu′′(s) + κ sin u(s) = 0, 0 < s < l (15)

where u is the angle between the undeformed rod and the tangent of
the deformed rod, s is the material coordinate, E is the elastic
modulus, I is the moment of inertia, κ is the compressive applied
force, and l is the length of the rod. u is a state variable and κ is
the bifurcation parameter. The rod is hinged at its ends, with the
boundary conditions:

u′(0) = u′(l) = 0 (16)

In the linear beam theory, the assumption |u(s)| ≪ 1 leads to a
linearized equation:

EIu′′(s) + κu(s) = 0 (17)

with the nontrivial solution:

u(s) = C cos
nπs

l
, if and only if κ =

n2π2EI

l2
(18)

where n is an integer. The lowest nonzero value κcr = π2EI/l2 is the
critical buckling load.
The solution to the linearized equation (17) gives some insight

into the solution of Eq. (15); however, there are issues that cannot
be addressed by the linearized analysis:

• The necessary condition for bifurcation is the existence of a
nontrivial solution near bifurcation point. However, this condi-
tion is not sufficient. Consider the nonlinear equation:

x3 + κx = 0 (19)

where x is a real state variable and κ is a real bifurcation param-
eter. Equation (19) admits a trivial solution x = 0 for all values
of κ. The linearlized equation κx = 0 has nontrivial solution
x = const. for κ = 0. The nonlinear equation, however, has
no bifurcation solution branch at κ = 0.

• When a bifurcation branch exists, its qualitative behavior
cannot be derived from the solution of the linearized equation.
It is not possible to establish how many bifurcation branches
there are and how these branches evolve as the bifurcation
parameter varies. Consider, for illustration,

x3 − κx = 0 (20)

which has a trivial solution x = 0 for all κ. The linearized equa-
tion κx = 0 has nontrivial solutions x = const. near κ = 0. It is,
however, not possible to determine the number of bifurcation
branches nor their evolution postbifurcation. The nonlinear
equation on the other hand admits solutions x = 0, x =

��
κ

√
,

and x = −
��
κ

√
when κ > 0 as postbifurcation branches.

Singularity theory is developed to address these issues in a sys-
tematic fashion. It first employs the Lyapunov–Schmidt reduction
to show that the solution to Eq. (14), which is defined in a function
space in this case, is equivalent to that of an algebraic equation with
one state variable. Next, by solving the recognition problem, the
solution to the algebraic equation can be shown to be equivalent
to that of a polynomial that exhibit the same bifurcation type in
the neighborhood of an origin. Singularity theory can be expanded

to bifurcation systems with symmetry. These equations presenting
symmetry can be shown to be equivariant under certain group
actions. Hence, the coupling of singularity theory and group
theory provides tool for gaining insight into the persistence and/or
the change of the symmetry that a bifurcation branch possesses
near a bifurcation point [59].
The early concepts of singularity theory were first proposed by

Thom, then developed rigorously by Mather [63,64], and later
extended by Anorld [65,66]. Subsequently, the development of sin-
gularity theory was systematized and then combined with group
theory by Golubitsky and Schaeffer [60] and Golubitsky et al. [61].

4.1 Liapunov–Schmidt Reduction. Consider a smooth
mapping f :U ⊂ X × K � Y where X and Y are Banach spaces
(i.e., complete normed vector spaces), U is an open subset of X
and K is an open subset of Rn. The equation of interest is written
as follows:

f (u, κ) = 0 (21)

where u determines the state of the system (e.g., deformation, tem-
perature), κ is a set of parameters (e.g., loads, geometry, material
parameters), and f is a nonlinear differential operator. f is Fréchet
differentiable at (u0, κ0) ∈ (U, K) with respect to u ∈ U if there
exists a bounded linear operator Du f (u0, κ0) :X � Y , referred to
as the first-order Fréchet derivative, such that

lim
h�0

‖ f (u0 + h, κ0) − f (u0, κ0) − hDu f (u0, κ0)‖
‖h‖ = 0 (22)

where ‖h‖ = ‖u − u0‖ and ‖·‖ is a norm induced by an inner
product on a Hilbert space, which will be discussed below. The
mapping f is assumed to be smooth in the sense that it admits a
Fréchet derivative of any order. This definition of Fréchet derivative
is akin to a Taylor expansion as ‖u − u0‖ � 0 up to the first deriv-
ative. Higher order derivatives can be derived by extending the
expansion to higher order terms. The implicit function theorem
requires that Duf (u0, κ0) be invertible as a necessary condition for
the existence of a bifurcation point at (u0, κ0).
We introduce Fredholm operators and Fredholm indexes. A

bounded linear operator L :X � Y is called a Fredholm operator
if the kernel of L, defined as ker L ≡ {u ∈ X : L(u) = 0}, is a finite-
dimensional subspace2 of X and the range of L, defined as
range L ≡ {y ∈ Y :L(u) = y for some u ∈ X}, is a closed subspace
of Y of finite-dimensional complement. If L is a Fredholm operator,
the Fredholm index i(L) is the integer

i(L) = dim ker L − codimrange L (23)

where dim ker L is the dimension of the kernel of L, and
codimrange L is the dimension of the complement the range of L.
From the definition of Fredholm operators, dim ker L and
codimrange L are finite; hence, the index i(L) is finite. If L :X �
Y is a Fredholm operator, then there exist closed subspaces R and
Q of X and Y , respectively, such that X and Y can be decomposed
as follows:

X = ker L⊕ R (24a)

Y = Q⊕ range L (24b)

where we use the direct sum ⊕ of subspaces, which allows to
uniquely define an element of X or Y as a sum of elements of
ker L and R, or Q and range L, respectively. In this article, we
will discuss only Fredholm operators with i(L) = 0 given that the
most problem in elasticity fall under this category. In this case,
dim ker L = codimrange L = dimQ. For differential operators, it is

2A space (or subspace) is finite dimensional if every element of that space (or sub-
space) can be represented as a finite linear combination of its basis. The dimension of
the space (or subspace) is the number of elements in its basis.
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typical to have Banach spaces that admit an inner product (i.e.,
Hilbert spaces). One such space is the Hilbert space L2(Ω), where
Ω is a bounded domain. The standard L2 inner product is expressed
as follows:

〈u, v〉 =
∫
Ω
uv (25)

which induces the norm ‖u‖2 = 〈u, u〉. For these spaces, decompo-
sitions in Eq. (24) are orthogonal, i.e., 〈u, v〉 = 0 for all u ∈ ker L
and v ∈ R. Similarly, 〈u, v〉 = 0 for all u ∈ Q and v ∈ range L.
We next describe the Lyapunov–Schimdt reduction of Eq. (21),

which is assumed to admit a solution near (0, κ0) ∈ X × K. The
differential operator L ≡ Duf (0, κ0) is the Fréchet derivative; the
Lyapunov–Schimdt reduction is applicable when the Fréchet deriv-
ative is a Fredholm operator at the bifurcation point. We assume a
Fredholm operator with zero index throughout. We define an
orthogonal projection P : Y � range L and the complementary pro-
jection (I − P) :Y � Q from the split in Eq. (24b), where I is the
identity operator. This allows us to decompose Eq. (21) into the fol-
lowing pair of equations:

Pf (u, κ) = 0 (26a)

(I − P)f (u, κ) = 0 (26b)

From decomposition (24a), we write u = v + w for some unique
v ∈ ker L and w ∈ M. Then, we can define the map G : ker L × R ×
K � range L as follows:

G(v, w, κ) ≡ Pf (v + w, κ) (27)

The Fréchet derivative DwG(v, w, κ) of G with respect to w is a
linear map R � range L. In the neighborhood of (0, κ0), the
bounded linear operator operator DwG(0, 0, κ) is a restriction of L
on R and a bijection. For finite-dimensional spaces, the bijection
of the differential operator implies that it is invertible. In the case
of Banach spaces, the additional condition that range L is closed,
given that it is assumed to be a Fredholm operator, implies its
invertibility. The projection of u to M and f to range L factors out
the invertible part of f .
Before proceeding further, we introduce the implicit function

theorem for Banach spaces due to its importance in determining
bifurcation points. Consider ϕ :X × K � Y , a C1 mapping
(a mapping with continuous first derivative) between Banach
spaces and let Duϕ(u, κ) :X � Y be the Fréchet derivative of ϕ
with respect to u as defined in Eq. (22). The implicit function
theorem states that for a C1 mapping ϕ near a fixed point (u0, κ0)
defined earlier, and supposing that Duϕ(u0, κ0) has a bounded
inverse, i.e., Duϕ(u0, κ0) ≠ 0, then equation ϕ(u0, κ0) = 0 can be
solved locally, in the neighborhood N (κ0) of κ0 in ker L, for
u0 =W(κ0), where W :N (κ0) � X is a C1 function. In essence,
the Lyapunov–Schmidt reduction makes it possible to apply the
implicit function theorem to equations where it is not readily appli-
cable as is the case near bifurcation points where the Fréchet deriv-
ative is not invertible.
Returning to the map G in Eq. (27) and its Fréchet derivative

DwG(v, w, κ), which we have argued is invertible, we apply the
implicit function theorem to solve for a unique w in the neighbor-
hood N (0, κ0) of the form w =W(v, κ) with W : ker L × K � R
which satisfies:

Pf (v +W(v, κ), κ) = 0 (28a)

W(0, κ0) = 0 (28b)

This solution is substituted in Eq. (26b) to obtain

g(v, κ) = (I − P)f (v +W(v, κ), κ) (29)

From the solution W(0, κ0) = 0, it follows that g(0, κ0) = 0. The
essential result of the Lyapunov–Schmidt reduction is that if the

differential operator in the linearization of Eq. (21) is a Fredholm
operator of index zero, then solutions of Eq. (21) are in one-to-one
correspondence with

g(v, κ) = 0 (30)

in the neighborhood of (0, κ0). Equation (30) is referred to as
reduced bifurcation equation.
In the next step, we will choose a basis e1, . . . , en for ker L and

e ∗1 , . . . , e∗n for Q. This choice is possible because both subspaces
are Banach spaces and also because we assumed L to be a Fredholm
operator of index zero, which leads to finite-dimensional subspaces
ker L and Q with equal dimension n. An element in ker L can be
written as v = viei, using the Einstein summation convention.
Then, the inner product of Eq. (30) with each e∗i forming a
system of equations:

gi(v, κ) ≡ 〈e ∗i , (I − P)f (v +W(v, κ), κ)〉
= 〈e ∗i , f (v +W(v, κ), κ)〉
= 〈e ∗i , f (vjej +W(vjej, κ), κ)〉

(31)

with the second equation arising from the fact that the projection P
maps f to range L, which is orthogonal to Q, and i, j = 1, . . . , n.
Equation (31) is equivalent to Eq. (30), and hence, the bifurcation
equation can be rewritten as follows:

gi(v, κ) = 0 (32)

and from (21), (28b), and (31), we obtain

gi(0, κ0) = 0 (33)

To solve Eq. (31), it is necessary to determine low-order terms of its
expansion. We will compute the derivative with respect to vj and κ.
The derivative of W will be determined by an implicit differentia-
tion of Eq. (28a) and the chain rule, and these will be used to
compute the derivatives of Eq. (31) near (v, κ) = (0, κ0).
We substitute v = viei in Eq. (28a) and differentiate with respect

to vi to obtain

PL(ei +Wvi ) = 0, where Wvi : =
∂W
∂vi

(34)

For conciseness, subscripts will be used to denote the following
partial derivatives. From the linearity of P, Eq. (34) implies that
L(ei +Wi) = 0; thus, ei +Wvi ∈ ker L. However, Wv ∈ R by defini-
tion, and hence,

Wvi (0, κ0) = 0 (35)

Next, we differentiate Eq. (28a) with respect to κ and use the lin-
earity of P to obtain

PLWκ + Pfκ = 0 ⇒ Wκ = −L−1Pfκ (36)

where L−1 is the inverse of the differential operator restricted to R
and fκ is the Fréchet derivative of f with respect to κ evaluated at
(u, κ) = (0, κ0). Similarly, differentiating Eq. (28a) with respect to
vi and vj gives:

Wvivj = −L−1Pfuueiej (37)

By using these results, we now compute the derivatives of
Eq. (31), taking into account the fact that e∗i is orthogonal to
range L. All derivatives will be taken at (v, κ) = (0, κ0). Differenti-
ating Eq. (31) with respect to vj, we obtain

givj = 〈e ∗i , L(ej +Wvj ) = 0〉 (38)

We obtain similar calculations by employing the results from
Eqs. (35) and (36):

giκ = 〈e ∗i , LWκ + fκ〉 = 〈e ∗i , fκ〉 (39)
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givjvk = 〈e ∗i , fuu(ej +Wvj )(ek +Wvk ) + LWvjvk 〉 = 〈e ∗i , fuuejek〉
(40)

givjvk = 〈e ∗i , fuu(ej +Wvj )(ek +Wvk ) + LWvjvk 〉 = 〈e ∗i , fuuejek〉
(41)

givjκ = 〈e ∗i , fuu(ej +Wvj )Wκ + fuκ(ej +Wvj ) + LWvjκ〉
= 〈e ∗i , − fuuej(L

−1Pfκ) + fuκej〉
(42)

givjvkvl = 〈e ∗i , fuuu(ej +Wvj )(ek +Wvk )(el +Wvl )

+ fuu[(ek +Wvk )Wvjvl + (ej +Wvj )Wvkvl

+ (el +Wvl )Wvjvk ] + LWvjvkvl 〉
= 〈e ∗i , fuuuejekel + fuu(ekWvjvl + ejWvkvl + elWvjvk )〉
= 〈e ∗i , (fuuu − 3fuuL

−1Pfuu)ejekel〉 (43)

4.1.1 Example: Bifurcation in the Elastica Problem. For illus-
tration, we return to the elastica problem (15) with boundary condi-
tions (16). We reformulate the problem to define the various Banach
spaces and the bifurcation problem (21). Let

U ⊂ X ≡ {u ∈ C2([0, l]; R) : u′(0) = u′(l) = 0}, Y ≡ C0([0, l]; R),
K = R

where Cn([0, l]; R) is the space of real-valued, n-continuously dif-
ferentiable functions (when n = 0, the function is not continuously
differentiable), and let

f (u(s), κ) = EIu′′(s) + κ sin u(s) (44)

The Fréchet derivative L of f with respect to u at (u, κ) = (0, κ0) is
given by

Lu(s) = EIu′′(s) + κ0u(s) (45)

The solution at equilibrium is found by solving the boundary
value problem Lu = 0 for u ∈ X:

dim ker L = 1, if κ0 = n2π2EI/l2

0, otherwise

{
(46)

We will be concerned with the case κ0 = n2π2EI/l2, where ker L
is expressed as follows:

ker L = u ∈ X : u(s) = C cos
nπs

l
, C ∈ R

{ }
(47)

The orthogonal complement R of ker L in X is then given as
follows:

R = w ∈ X :
∫l
0
w(s) cos

nπs

l
ds = 0

{ }

where we employed the inner product (25) equal to zero to define
the orthogonal complement. Similarly, the orthogonal complement
Q to range L in Y contains elements y(s) that, for every u ∈ X, can
be obtained from the following equation:

〈y, Lu〉 =
∫l
0
y(s)[EIu′′(s) + κ0u(s)] ds

= [EIy(s)u′(s)]l0 +
∫l
0
[EIy′(s)u′(s) + κ0y(s)u(s)] ds

= [EIy′(s)u(s)]l0 +
∫l
0
[EIy′′(s) + κ0y(s)]u(s) ds

= 〈Ly, u〉 = 0

where we integrated by parts twice and used the boundary condi-
tions (16). The aforementioned orthogonality condition implies
that y(s) ∈ Q must satisfy:

Ly = EIy′′(s) + κ0y(s) = 0 on (0, l) (48)

y′(0) = y′(l) = 0 (49)

The aforementioned equation implies that the elements y belong
to ker L, i.e., Q = ker L. This in turn implies that the orthogonal
complement R of ker L is range L. The subspaces ker L and Q are
spanned by the bases

e = e∗ =

��
l

2

√
cos

nπs

l
(50)

derived from Eq. (47) with a normalization coefficient.
The projection Py(s) of the space Y onto the subspace range L is

obtained by subtracting the elements of ker L from elements of Y .
This is possible because we have shown that the subspaces
range L and ker L are orthogonal complements of Y . Hence,

Py(s) = y(s) −
2
l

∫l
0
y(t) cos

nπt

l
dt

[ ]
cos

nπs

l
.

4.2 Recognition Problem. The singularity theory approach to
bifurcation problems focuses on two issues. The first issue is the
importance of higher order derivatives in the Taylor expansion of
Eq. (21) in determining the qualitative behavior of the solution.
In other words, to what extent is the qualitative behavior determined
by low-order derivatives of Eq. (21)? The singularity theory term
for this problem is finite determinacy. The second issue is finding
a polynomial equation as simple as possible whose solution is in
one-to-one correspondence with the given equation near a bifurca-
tion point. This is termed as the recognition problem and the poly-
nomial is referred to as the normal formwhich can be determined by
a finite number of derivatives of the given equation. The normal
form will have the same qualitative behavior as the reduced bifurca-
tion equation near the bifurcation.
Here, we focus on solving the recognition problem for the

reduced bifurcation problem in Eq. (30) of the form g(x, κ). We
choose a 1-d space (R) for both the state variable and the bifurcation
parameter and choose the bifurcation point to be at the origin (0, 0)
for convenience without loss of generality.
We define two smooth mappings g, h :N × R � R as strongly

equivalent if there exist functions X(x, κ) and S(x, κ) such that the
relation

g(x, κ) = S(x, κ)h(X(x, κ), κ) (51a)

holds near the origin and that the conditions

X(0, 0) = 0, Xx(x, κ) > 0, S(x, κ) > 0 (51b)

are satisfied. The most important consequence of equivalence is that
the number of solutions of Eq. (30) is preserved when this equation
is replaced by

h(X, κ) = 0 (52)

To prove this, suppose that for a given κ, the reduced bifurcation
equation g(x, κ) has exactly n solutions of the form x1 < x2 < . . . <
xn such that

g(xi, κ) = 0 for all i = 1, . . . , n (53)

From Eqs. (51a) and (51b)3, we have

h(X, κ) = 0 if and only if X = X(xi, κ), i = 1, . . . , n (54)

And it is obvious from Eq. (51b)2 that X(x1, κ) < X(x2, κ)
< . . . < X(xn, κ).
The main idea behind the recognition problem is to explicitly

characterize the smooth mappings that are strongly equivalent to
g near the origin. Much of the singularity theory is devoted to
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finding the simplest normal form for a certain function for which a
number of derivatives are given or computed at a certain bifurcation
point. It is worth mentioning that for more complicated problems,
with various degrees of sophistication, it may not be practical to
derive the normal form from the derivatives. Equation [59] gives
examples of some bifurcation problems whose normal form can be
derived from the derivatives. In the next section, we will demonstrate,
by using elementary calculus, how a normal form can be constructed,
and some conditions of equivalence between two functions are estab-
lished through the examination of their tangent spaces.

4.2.1 Recognition Problem for Pitchfork Bifurcation. The
main focus for this section will be to determine the conditions under
which the reduced function g(x, κ) is strongly equivalent to h(x, κ).
Let Ex,κ denote a space of smooth functions g :R2 � R on some

neighborhood of the origin.
DEFINITION 1 ((Restricted tangent space)). Let g ∈ Ex,κ. A func-

tion f (x, κ) belongs to the restricted tangent space of g(x, κ),
denoted as RT(g) if and only if there exist smooth functions
a(x, κ), b(x, κ), c(x, κ) ∈ Ex,κ such that

f (x, κ) = ag + (xb + κc)gx (55)

where gx denotes the partial derivative of g with respect to x. The
notion of restricted tangent space is linked to the notion of strong
equivalence introduced in the previous section by the fact that the
function f is said to be in RT (g) if g + εf is strongly equivalent
to g for all small ε. To show this, suppose that for some perturbation
f , the strong equivalence is satisfied. Then, for some small ε, there
exist S(x, κ, ε) and X(x, κ, ε) such that

g(x, κ) + εf (x, κ) = S(x, κ, ε)g(X(x, κ, ε), κ) (56)

where X(0, 0, ε) ≡ 0 at the origin. Suppose further that both S and
X are smooth functions of x, κ and ε and that at ε = 0, the identity
transformation for g is such that

S(x, κ, 0) ≡ 1, X(x, κ, 0) ≡ x (57)

It follows then by differentiating Eq. (56) with respect to ε:

f (x, κ) = Sε(x, κ, 0)g(x, κ) + gx(x, κ)Xε(x, κ, 0) (58)

where we identify the terms a = Sε(x, κ, 0) and xb + κc = Xε(x, κ, 0)
in Eq. (55). The restricted tangent space defines a necessary condi-
tion for strong equivalence.
To illustrate the idea, we use a simple example of a pitchfork

bifurcation g = κx − x3 and determine the necessary conditions on
the strongly equivalent function f (x, κ). To achieve this, we use
the definition in Eq. (55) and group terms to obtain

f (x, κ) = a(κx − x3) + (xb + κc)(κ − 3x2) = (a + b − 3xc)κx

− (a + 3b)x3 + cκ2 (59)

where a, b, and c ∈ Ex,κ . We then write Eq. (59) as follows:

f (x, κ) = α(x, κ)x3 + β(x, κ)κx + γ(x, κ)κ2 (60)

where

−a − 3b = α

a + b − 3xc = β

c = γ

Finally, we apply a Taylor expansion of f near the origin
(x, κ) = (0, 0):

f (x, κ) = f (0, 0) + fx(0, 0)x + fκ(0, 0)κ + fxx(0, 0)x2 + fxκ(0, 0)xκ

+ fκκ(0, 0)κκ + fxxx(0, 0)x3 (61)

Comparing Eqs. (61) and (60) gives:

f (0, 0) = fx(0, 0) = fκ(0, 0) = fxx(0, 0) = 0 (62)

and

α = fxxx(0, 0), β = fxκ(0, 0), and γ = fκκ(0, 0)

The conditions in Eq. (62) are referred to as the defining condi-
tions of the normal form. Additional conditions, in the form of
inequalities, are needed to establish that a normal form is strongly
equivalent to a reduced equation. These conditions are will be
referred to as nondegeneracy conditions.
Equation (60) can be simplified further to h(x, κ) = α(x, κ)x3 +

β(x, κ)xκ by redefining f (x, κ) = h(x, κ) + γ(x, κ)κ2 and then
employing Theorem 2.2 in Ref. [60], which states that given
f , p ∈ Ex,κ; if RT( f + tp) = RT( f ) for all t ∈ [0, 1], then f + tp is
strongly equivalent to f for all t ∈ [0, 1]. It suffices to show
that RT( f ) = RT(h) to established the strong equivalence between
the two functions. We follow Ref. [59] by showing that
RT( h) ⊂ RT( f ), using the definition (55), such that

af + (xb + κc)fx = a(h + γκ2) + (xb + κc)(hx + γxκ
2) (63)

=ah + (bx + cκ)hx (64)

where a, b, and c are smooth functions given by the following
expressions:

a : = a −
[aγ + (bx + cκ)γx](3α + αxx)2x
[2αβ + ( βαx − αβx)x]( β + βxx)

b : = b +
α[aγ + (bx + cκ)γx](3α + αxx)x
[2αβ + ( βαx − αβx)x]( β + βxx)

c : = c +
aγ + (bx + cκ)γx

β + βxx

The degeneracy conditions can be derived by comparing the sign
of coefficients of κx and x3 in the normal form g = κx − x3 and
Eq. (61), which leads to the following:

α = fxxx < 0, β = fκx > 0 (65)

In the example, we used elementary calculus to derive the defin-
ing and degeneracy conditions for the pitchfork bifurcation. Chief
among these is the Taylor expansion of the smooth function g,
which consist of a linear expansion of the partial derivatives with
respect to both the state variable and the bifurcation parameter in
the neighborhood of the origin. These partial derivatives of g can
be grouped into three classes, namely, low-, intermediate-, and
high-order terms. These play an important role in solving the recog-
nition problem. It is worth mentioning here that we have only con-
sidered a simple bifurcation problem. For more general bifurcation
problems, sophisticated techniques from group theory and algebra
might be needed, as described in Refs. [60,61] to solve the recogni-
tion problem. We will restrict our focus to the simple cases while
explaining, briefly and without proof, some concepts necessary
for understanding the procedure.
The low-order terms in the Taylor expansion are the monomials

of the form xpκq such that the corresponding partial derivatives
∂ p+qg/∂xp∂κq = 0 in the defining conditions. In the aforementioned
example, the low-order terms will be 1, x, κ, and x2 associated with
the partial derivatives in Eq. (62). These terms are excluded from
the Taylor expansion and the subsequent equivalence transforma-
tion in Eq. (65).
The higher order terms of the expansion are those that can

be transformed out of the expression through strong equivalence
as was done in Eq. (65). For our example, these are
κ2, κx2,κ2x, κ3, . . .. These can be identified through an analysis of
the normal form and its perturbations employing the theorem
stated earlier. These terms can be incorporated with other terms in
the Taylor expansion after an appropriate redefinition of the coeffi-
cients. It is also worth mentioning that the higher order terms do not
correspond, in general, to monomials xpκq of the Taylor expansion
whose associated derivatives ∂ p+qg/∂xp∂κq are not in neither the
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defining nor the degeneracy conditions. Some higher order mono-
mials will be absorbed into other monomials through the equiva-
lence transformation; thus, they will not appear in the normal
form even though their associated partial derivatives appear in
either the defining or nondegeneracy conditions.
The monomial terms that are neither low-order nor higher order

terms are those that remain in the normal form. These are referred to
as intermediate-order terms. After the given function is reduced to
finite intermediate-order terms, it only remains to reduce their coef-
ficients to constants to get the final expression of the normal form.
Chapter 9 of Ref. [59] describes several solutions to the recognition
problems for various bifurcation problems, as well their defining
and nondegeneracy conditions.
In the section that follows, a pitchfork bifurcation problem with

Z2 symmetry is analyzed, in the context of an homogeneous elastic
body in the presence of an electric field.

5 Bifurcation Analysis
The instability in the T–K problem was previously studied by

Chen [67] and Sithigh and Chen [68] for a homogeneous elastic
body under dead-load tractions with Z2 symmetry. This symmetry
is present in our problem with only out-of-plane electric fields3

and with uniform loading T̂1 = T̂2 = T̂ in Eqs. (12a) and (12b).
This is demonstrated by the invariance of ψ̂(λ1, λ2, Ê3) in
Eq. (11) under the permutation of λ1 and λ2, in the principal
plane of F, i.e.,

ψ̂ (λ1, λ2, Ê3) = ψ(λ2, λ1, Ê3) (66)

We denote symmetric solutions to Eqs. (12a) and (12b) by λ =
λ1 = λ2 and use the change of variables:

x =
λ1 + λ2

2
− λ, y =

λ1 − λ2
2

, and τ = T̂ − t̂0 (67)

In the case of symmetric stretching, the solution will be obtained
for values of x = y = τ = 0. We highlight that y measures the depar-
ture from symmetric deformation. We rewrite the equilibrium equa-
tions by summing and subtracting, respectively, Eqs. (12a) and
(12b) to obtain

T̂1(λ + x + y, λ + x − y, Ê3) + T̂2(λ + x + y, λ + x − y, Ê3)

− 2(T̂ + τ) = 0 (68)

T̂1(λ + x + y, λ + x − y, Ê3) − T̂2(λ + x + y, λ + x − y, Ê3) = 0

(69)

It then follows from Eq. (66) that the left sides of Eqs. (68) and
(69) are, respectively, even and odd in y. From a theorem by
Ref. [69], it follows that there exist smooth functions p(x, y2, τ)

and yq(x, y2), such that

p(x, y2, τ) = T̂1(λ + x + y, λ + x − y, Ê3) + T̂2(λ + x + y, λ

+ x − y, Ê3) − 2(T + τ) (70)

yq(x, y2) = T̂1(λ + x + y, λ + x − y, Ê3)

− T̂2(λ + x + y, λ + x − y, Ê3) (71)

With this reformulation, Eqs. (68) and (69) can be written as
follows:

g(x, y, τ) : = ( p(x, y2, τ), yq(x, y2)) = 0 (72)

where g is defined in the neighborhoodN of R2 × R similar to that
introduced in the previous section.
We then compute the first-order partial derivatives at

x = y = τ = 0:

p = 0 q = 2 +
2

λ6
+
6γ

λ4
− 2λ2(γ − Ê2

3) (73)

px : =
∂p
∂x

= 2 +
10

λ6
+
6γ

λ4
+ 6λ2 γ − Ê2

3

( )
qx : =

∂q
∂x

= −
12

λ7
−
24γ

λ5
− 4λ γ − Ê2

3

( ) (74)

py2 : =
∂p

∂ y2
( ) = −

12γ

λ5
− 2λ γ − Ê2

3

( )
−

6

λ7

qy2 : =
∂q

∂ y2
( ) = 6

λ8
+
20γ

λ6
+ 2 γ − Ê2

3

( ) (75)

pτ : =
∂p
∂τ

= −2 (76)

The derivative px is positive when Ê3 <
��
γ

√
and q is monotone

decreasing in the same interval. The solution of the recognition
problem associated with the Z2 equivariant function gives that
p = q = 0 is the defining condition for bifurcation. The stretch
corresponding to the bifurcation point is the root of q = 0 and
has the following form:

λ2bif = −
1

4 Ê2
3 − γ

( ) + 1
2

���������������������
1

4 Ê2
3 − γ

( )2 + A + B

√

1
2

�����������������������������������������������������������
1

2 Ê2
3 − γ

( )2 − A − B +
1 + 24γ Ê2

3 − γ
( )2

Ê2
3 − γ

( ) ������������������������
1 + 4(A + B) Ê2

3 − γ
( )2√

√√√√√
(77)

where

A =

�
[

√
3]2 4Ê2

3 − 7γ
( )

γ − Ê2
3

( )
243γ2 γ − Ê2

3

( )
+

�������������������������������������������
243γ2 γ − Ê2

3

( )
− 27

( )2−4 12Ê2
3 − 21γ

( )3√
− 27

( )1/3

B =
243γ2 γ − Ê2

3

( )
+

�������������������������������������������
243γ2 γ − Ê2

3

( )
− 27

( )2−4 12Ê2
3 − 21γ

( )3√
− 27

( )1/3

3
�
[

√
3]2 γ − Ê2

3

( )

The critical bifurcation load t̂bif computed by substituting λ1 =
λ2 = λbif in either Eq. (12a) or (12b) is expressed as follows:

t̂bif = λbif + γ − Ê2
3

( )
λ3bif − γλ2bif + 1

( )
λ−5bif (78)3As shown in Ref. [30], in-plane fields break this symmetry.
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A plot of λbif against Ê3 in Fig. 1(a) shows a nonlinear increase in
the critical bifurcation stretch as the electric field increases. This
means the load required to produce an asymmetric deformation
increases with an increase in the electric field as shown in
Fig. 1(b). The limiting value beyond which no bifurcation will
occur (the stretch at bifurcation goes to infinity) is when
Ê3 ≥ ��

γ
√

. The effect of the material parameter γ on stretch and crit-
ical load is plotted in Figs. 1(a) and 1(b), respectively. It is observed
that increasing γ increases the limiting value of Ê3 needed to sup-
press bifurcation. For an application where the T–K instability
needs to be suppressed, a material should be selected to minimize
γ for better performance.

5.1 Linear Approximation of the Postbifurcation Behavior.
We now approximate the bifurcation curve by using a perturbation
approach, near the origin (with no applied traction) for the prebifur-
cation branch and near the bifurcation point for the postbifurcation
branch. In the prebifurcation branch, the curve is matched with the
solution for the unloaded state as well as the deformed state at the
bifurcation point.
We consider the perturbation λ1 = λ2 = 1 + ϵ, where ϵ is a small

parameter. By substituting this in Eq. (12a) and eliminating terms
that are higher order in ϵ, we obtain

−t̂0 − Ê2
3 + 3ϵ(2 + 2γ − Ê2

3) = 0 (79)

We solve for ϵ in Eq. (79) and obtain the stretch:

λ1 = λ2 = 1 + F
t̂0 + Ê2

3

3(2 + 2γ − Ê2
3)

(80)

which matches the slope of the stretch–load curve near λ1 = λ2 = 1
and t̂0 = 0 when the factor F = 1. To further match the bifurcation
point with (80), F is computed as follows:

F = λbif − 1( ) 3 2 + 2γ − Ê2
3

( )
t̂bif + Ê2

3

(81)

where t̂bif is the critical bifurcation load. We see in Fig. 2 that this
approximation matches well with the numerical solution, which is
computed using a Newton–Raphson method applied to Eq. (11).
The postbifurcation branch of the curve is much more nonlinear,

and a linearized perturbation analysis will not capture the entire
branch. However, the linearized perturbation analysis is able to

predict the postbifurcation slope. The stretches in Eq. (13) are sub-
stituted with λ1 = λbif + ϵ1 and λ2 = λbif + ϵ2, where ϵ1 and ϵ2 are
assumed to be small. After substitution, and elimination of higher
order terms in ϵ1 and ϵ2, Eq. (13) is expressed as follows:

(ϵ1 + ϵ2)
1

λ3bif
− 2λ3bif + 3λ5bif γ − Ê2

3

( )( )
− λ4bif −

1

λ2bif
− 3γ

+ λ6bif γ − Ê2
3

( )
= 0 (82)

We further use either of the equilibrium equations (12a) or (12a).
After substitution, and elimination of higher order terms in ϵ1 and
ϵ2, we obtain

ϵ1
3γ

λ4bif
+

3

λ6bif
+ 1 + λ2bif γ − Ê2

3

( )( )
+ 2ϵ2

1

λ6bif
+ λ2bif γ − Ê2

3

( )( )

+ λ3bif γ − Ê2
3

( )
−

γ

λ3bif
−

1

λ5bif
+ λbif − t̂0 = 0

(83)

By solving Eqs. (82) and (83) for ϵ1 and ϵ2, we can write:

λ1 = λbif +
1
3

4 λ7bif + λbif
( )

2λ6bif − 3λ8bif γ − Ê2
3

( )
− 1

+
3 t̂0 − 2λbif
( )

λ6bif − 2γλ3bif
( )

λ6bif + 3γλ2bif − λ8bif γ − Ê2
3

( )
+ 1

+ λbif

( )
(84)

Fig. 1 (a) Bifurcation stretch λbif as a function of the through-thickness electric field Ê3. (b) Critical load t̂bif at bifur-
cation as a function of Ê3. The bifurcation stretch and critical load go to infinity as Ê3 � ��

γ
√

.

Fig. 2 Comparison between the numerical solution and the per-
turbation approximation for the bifurcation diagram
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λ2 = λbif +
1
3
λbif

9γλ2bif + 5λ6bif + 8

3λ8bif γ − Ê2
3

( )
− 2λ6bif + 1

+
6γλ2bif + 6λ6bif − 3λ5bif t̂0

3γλ2bif − λ8bif γ − Ê2
3

( )
+ λ6bif + 1

− 2

( )
(85)

The aforementioned equations are linear in the load, but they
provide an approximation of the postbifurcation behavior near the
bifurcation point, as shown in Fig. 2.

6 Concluding Remarks
There are two key failure modes for a dielectric elastomer:

(i) dielectric breakdown, which occurs when the applied electrical
voltage exceeds a critical threshold, and (ii) the triggering of
mechanical instability. While the latter can sometimes be exploited
for innovative designs, it is often undesirable. In this work, we
derive closed-form solutions to the bifurcation problem governing
the electromechanical loading of a dielectric disk. Specifically, we
discover that in the presence of a through-thickness electric field,
there exists a critical value beyond which an infinite mechanical
force would be required to trigger Treloar–Kearsley instability.
This allows us to determine the conditions necessary to design a
dielectric elastomer configuration that is impervious to instability.
In principle, our approach can be extended to any structural config-
uration, although numerical computations may be required for more
complex shapes and boundary conditions.
The dielectric breakdown of DEs depends on the elastic modulus

as well as the relative permittivity, defined as (1 + χ) as used in the
electrical energy density in Eq. (6) [70]. A high-performance DE
capable of large strain under electric field reported in Ref. [71]
has a normalized dielectric breakdown strength Êb = 0.6

��
3

√
,

obtained from experimental results. This breakdown strength,
which is typical of high-performance DE, is well in excess of the
Ê3 values needed to suppress the T–K instability following the strat-
egy proposed in this article.
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